首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >SYSTEM ANALYSIS OF THERMOCHEMICAL-BASED BIOREFINERIES FOR COPRODUCTION OF HYDROGEN AND ELECTRICITY
【24h】

SYSTEM ANALYSIS OF THERMOCHEMICAL-BASED BIOREFINERIES FOR COPRODUCTION OF HYDROGEN AND ELECTRICITY

机译:基于热化学的生物料制氢气和电力的系统分析

获取原文

摘要

Fuels derived from biomass feedstocks are a particularly attractive energy resource pathway given their inherent advantages of energy security via domestic fuel crop production and their renewable status. However, there are numerous questions regarding how to optimally produce, distribute, and utilize biofuels such that they are economically, energetically, and environmentally sustainable. Comparative analyses of two conceptual 2000 tonne/day thermochemical-based biorefineries are performed to explore the effects of emerging technologies on process efficiencies. System models of the biorefineries, created using ASPEN Plus, include all primary process steps required to convert a biomass feedstock into hydrogen, including gasification, gas cleanup and conditioning, hydrogen purification, and thermal integration. The biorefinery concepts studied herein are representative of 'near-term' (ca. 2015) and 'future' (ca. 2025) plants. The 'near-term' plant design serves as a baseline concept and incorporates currently available commercial technologies for all non-gasifier processes. The 'future' plant design employs emerging gas cleaning and conditioning technologies for both tar and sulfur removal unit operations. Gasifier technology employed in these analyses is centered on directly-heated, oxygen-blown, fluidized-bed systems. Selection of the gasifier pressurizing agent (CO_2 v. N_2) is found to be a key factor in achieving high hydrogen production efficiency. Efficiency gains of 8-percentage points appear possible with CO_2 capture using Selexol or Rectisol-type processes. A 25% increase in electric power production is observed for the 'future' case over the baseline configuration due to improved thermal integration while realizing an overall plant efficiency improvement of 2 percentage points. Exergy analysis reveals the largest inefficiencies are associated with the (i) gasification, (ii) steam and power production, and (iii) gas cleanup and purification processes.
机译:源自生物质原料的燃料是一种特别有吸引力的能源资源途径,鉴于能源安全通过国内燃料作物生产及其可再生地位的固有优势。然而,有些关于如何最佳地生产,分配和使用生物燃料的问题,使得它们在经济,能力和环境上可持续。进行两种概念2000吨/日的基于热化学的生物猎物的对比分析,探讨了新兴技术对过程效率的影响。使用ASPEN Plus创建的生物寄生虫的系统模型包括将生物质原料转化为氢气所需的所有主要过程步骤,包括气化,气体清洁和调节,氢气净化和热整合。本文研究的生物遗料概念是“近期”(CA. 2015)和“未来”(约2025年)植物的代表。 “近期”工厂设计用作基线概念,并将目前可用的商业技术融入所有非气化器流程。 “未来”植物设计采用新出现的气体清洁和调节技术,适用于焦油和硫磺拆卸单元操作。这些分析中使用的气化器技术以直接加热,氧气,流化床系统为中心。发现气化器加压剂(CO_2 v.n_2)是实现高氢生产效率的关键因素。使用Selexol或Rectisol型过程,CO_2捕获效率增益似乎可能。由于在实现2个百分点的整体植物效率提高的同时,在基线配置上观察到电力生产增加25%的电力生产增加了。 Deergy分析揭示了最大的低效率与(i)气化,(ii)蒸汽和电力产生,(iii)气体清洁和净化过程有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号