首页> 外文期刊>Journal of Energy Resources Technology >System Analysis of Thermochemical-Based Biorefineries for Coproduction of Hydrogen and Electricity
【24h】

System Analysis of Thermochemical-Based Biorefineries for Coproduction of Hydrogen and Electricity

机译:基于热化学的生物精炼厂联合生产氢气和电力的系统分析

获取原文
获取原文并翻译 | 示例
       

摘要

Fuels derived from biomass feedstocks are a particularly attractive energy resource pathway given their inherent advantages of energy security via domestic fuel crop production and their renewable status. However, there are numerous questions regarding how to optimally produce, distribute, and utilize biofuels such that they are economically, energetically, and environmentally sustainable. Comparative analyses of two conceptual 2000 tons/day thermochemical-based biorefineries are performed to explore the effects of emerging technologies on process efficiencies. System models of the biorefineries, created using ASPEN Plus~® , include all primary process steps required to convert a biomass feedstock into hydrogen, including gasification, gas cleanup and conditioning, hydrogen purification, and thermal integration. The biorefinery concepts studied herein are representative of "near-term" (approximately 2015) and "future" (approximately 2025) plants. The near-term plant design serves as a baseline concept and incorporates currently available commercial technologies for all nongasifier processes. Gasifier technology employed in these analyses is centered on directly heated, oxygen-blown, fluidized-bed systems that are pressurized to nearly 25 bars. The future plant design employs emerging gas cleaning and conditioning technologies for both tar and sulfur removal unit operations. A 25% increase in electric power production is observed for the future case over the baseline configuration due to the improved thermal integration while realizing an overall plant efficiency improvement of 2 percentage points. Exergy analysis reveals that the largest inefficiencies are associated with the (i) gasification, (ii) steam and power production, and (Hi) gas cleanup and purification processes. Additional suggestions for improvements in the biorefinery plant for hydrogen production are given.
机译:源自生物质原料的燃料是一种特别有吸引力的能源途径,因为它们通过国内燃料作物的生产获得能源安全的固有优势,并且具有可再生的地位。然而,关于如何最佳地生产,分配和利用生物燃料,以使其在经济,能源和环境上可持续,存在许多问题。对两个概念性的2000吨/天基于热化学的生物精炼厂进行了比较分析,以探索新兴技术对过程效率的影响。使用ASPENPlus®创建的生​​物精炼厂的系统模型包括将生物质原料转化为氢气所需的所有主要工艺步骤,包括气化,气体净化和调节,氢气纯化和热集成。本文研究的生物精炼概念代表了“近期”(约2015年)和“未来”(约2025年)植物。短期工厂设计是基本概念,并结合了所有非气化炉工艺的当前商业技术。这些分析中使用的气化炉技术集中在直接加热,吹氧流化床系统上,该系统加压至将近25巴。未来的工厂设计将采用新兴的气体清洁和调节技术,用于焦油和硫磺去除装置的运行。由于改进了热集成,同时实现了整体工厂效率提高2个百分点,因此在未来情况下,与基准配置相比,发电量将增加25%。火用分析表明,最大的效率低下与(i)气化,(ii)蒸汽和电力生产以及(Hi)气体净化和净化过程有关。给出了改进用于氢气生产的生物精炼厂的其他建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号