首页> 外文会议>Natural Gas Conversion Symposium >Conceptual Design of a Dual Fluidized Bed System for an Intensified Steam Methane Reforming Concept Coupled with Ca-Ni Looping
【24h】

Conceptual Design of a Dual Fluidized Bed System for an Intensified Steam Methane Reforming Concept Coupled with Ca-Ni Looping

机译:一种适用于加强蒸汽甲烷重整概念的双流化床系统的概念设计耦合CA-NI环路

获取原文

摘要

The severe environmental issues along with the foreseen depletion of fossil fuels have accentuated the need of finding alternative fuels and energy production technologies that reduce the dependence on fossil energy and moderate CO2 emissions. Hydrogen is regarded as an important primary industrial gas as well as a promising and sustainable energy carrier due to its combustion having high energy efficiency and zero carbon emissions. The dominant large-scale production path of hydrogen is steam reforming of natural gas which is considered an energy intensive process and requires multiple steps and complexity to achieve the generation of high-purity hydrogen. Furthermore, due to thermodynamic limitations the process is usually coupled with water-gas shift reactors downstream the reformer to recover additional hydrogen and thus not avoiding the co-production of CO2. To address the aforementioned issues, a novel technology which provides a path for intensified conversion of natural gas directly to high purity hydrogen in a single step has been developed; the so-called sorption enhanced chemical looping steam methane reforming (SE-CL-SMR) [1]. This concept combines the reformer and WGS reactors in a single unit by introducing a solid sorbent material such as CaO that can in-situ remove the produced CO2. The exothermic carbonation reaction of CaO with the produced CO2 enables the performance of both the reforming and water-gas shift reactions in a single vessel, overcoming the thermodynamic limitations of the overall reaction, while the heat generated by the strongly exothermic carbonation is consumed in-situ for the endothermic reforming reaction. When the solid sorbent material reaches saturation, it needs to be regenerated in a separate reactor for it to be re-utilized. The necessary heat for the regeneration is addressed with the introduction of a second chemical loop, where an oxygen transfer material (OTM) such as NiO is also circulating between the two reactors by undergoing continuing redox reactions. During the regeneration stage, a sweep gas such as pure oxygen can be used for the strongly exothermic oxidation of the OTM thus moderating the thermal demands of the regeneration. The oxidized OTM returns to the reformer wherein is reduced by methane and the reformate gases. In addition to the oxygen transfer properties as an OTM, NiO in the reduced form presents excellent catalytic properties for steam methane reforming and water gas shift reactions. A schematic representation of the combined process is presented in Fig. 1.
机译:与化石燃料的枯竭预见的一起严重的环境问题已经加剧了寻找替代燃料和能源生产技术,减少对化石能源和适中的二氧化碳排放量的依赖的需要。氢被认为是一个重要的主要的工业气体以及有希望的和可持续的能源载体由于具有高能量效率和零个碳排放其燃烧。氢的主要大规模生产路径是蒸汽,其被认为是一种能量密集的过程,并且需要多个步骤和复杂性,以实现高纯度氢气的生成天然气的重整。此外,由于热力学的限制,该过程通常加上水煤气变换反应器下游的重整器以回收另外的氢气,因此不避免共同生产二氧化碳。为了解决上述问题,一种新颖的技术,该技术提供了用于天然气直接在单个步骤中的高纯度氢已经开发强化转换的路径;的所谓的吸附增强的化学循环蒸汽甲烷重整(SE-CL-SMR)[1]。这一概念通过引入固体吸附剂这种材料按CaO可在原位除去产生的CO 2结合在单个单元中的重整和WGS反应器。与所产生的CO 2 CaO的放热碳酸化反应使在单个容器中既重整和水煤气变换反应的性能,从而克服总反应的热力学限制,同时由强放热的碳化产生的热量被消耗IN-原位用于吸热重整反应。当固体吸附剂材料达到饱和,它需要在一个单独的反应器中进行再生为它是再利用。用于再生所需的热量与引入第二化学环路的,其中氧转移材料(OTM),例如以NiO也两个反应器之间通过经受持续的氧化还原反应的循环寻址。在再生阶段中,吹扫气如纯氧可以用于因此OTM缓和再生的热需求强烈放热的氧化。氧化OTM返回到重整器,其特征在于由甲烷和重整气体减少。除了作为OTM,氧化镍在蒸汽甲烷重整和水煤气变换反应的还原形式呈现优异的催化性能的氧传递性能。将合并的方法的示意图示于图1中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号