首页> 外文会议>ERCOFTAC Workshop on Direct and Large-Eddy Simulation >LES Modeling of a Turbulent Lifted Flame in a Vitiated Co-flow Using an Unsteady Flamelet/Progress Variable Formulation
【24h】

LES Modeling of a Turbulent Lifted Flame in a Vitiated Co-flow Using an Unsteady Flamelet/Progress Variable Formulation

机译:使用不稳定的爆炸/进展可变制剂在虚弱的汇流中建模湍流升起的火焰

获取原文

摘要

In this work, an unsteady flamelet/progress variable (UFPV) model is applied in large-eddy simulation of a lifted methane/air flame in a vitiated co-flow. In this burner configuration, the flame is stabilized by autoignition. This ignition mode is of particular relevance to a number of practical applications, including furnaces, internal combustion engines, and flame stabilization in augmentors. Autoignition of a reactant mixture is typically initiated in localized regions of low scalar dissipation rate having a mixture composition that favors short ignition times. Since the prediction of autoignition events, however, is strongly dependent on the structure of the surrounding turbulent reacting flow field, combustion models are required that are able to provide an accurate characterization of the spatio-temporal flow field. Although LES techniques have been shown to provide improved predictions for turbulent mixing processes, these localized ignition kernels are computationally not resolved. Therefore, subgrid-scale closure models are required to characterize effects of unresolved scales and ignition kinetics. Another computational challenge arises from the transient evolution of these localized ignition events. Since such ignition events are only inadequately represented by steady-state flamelet models, it is therefore necessary to utilize an unsteady combustion model. To this end, an unsteady flamelet/progress variable (UFPV) model has been developed [1]. In the following, the mathematical model describing the UFPV formulation and the presumed PDF closure is summarized. The experimental configuration and computational setup are discussed in Sec. 3, and computational results are presented in Sec. 4. The paper finishes with conclusions.
机译:在这项工作中,在升降的甲烷/空气火焰的大涡流模拟中,在升降的甲烷/空气火焰中,在升降的甲烷/空气火焰中,在升降的甲烷/空气火焰中的大涡流模拟中施加了一个不稳定的扑克/进度变量(UFPV)模型。在该燃烧器配置中,通过自动燃烧稳定火焰。该点火模式与许多实际应用具有特别相关的,包括炉子,内燃机和增强器中的火焰稳定。反应物混合物的自燃通常在低标量耗散速率的局部区域中引发,其具有伴随着短点点火时间的混合物组合物。然而,由于自主事件的预测强烈地取决于周围的湍流反应流场的结构,因此需要燃烧模型能够提供时空流场的精确表征。尽管已经显示了LES技术来提供对湍流混合过程的改进的预测,但这些局部点火内核是计算不解决的。因此,需要子级缩放封闭模型来表征未解决的尺度和点火动力学的效果。来自这些局部点火事件的瞬态演变出现了另一个计算挑战。由于这种点火事件仅被稳态爆震模型不足,因此必须利用不稳定的燃烧模型。为此,已经开发了一个不稳定的Flame /进度变量(UFPV)模型[1]。在下文中,总结了描述UFPV制剂和假定PDF闭合的数学模型。秒讨论了实验配置和计算设置。 3,并且计算结果以SEC呈现。本文结束了结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号