首页> 外文会议>ASME Annual Dynamic Systems and Control Conference >ANALYSIS AND PASSIVE CONTROL OF A FOUR-BAR LINKAGE FOR THE REHABILITATION OF UPPER-LIMB MOTION
【24h】

ANALYSIS AND PASSIVE CONTROL OF A FOUR-BAR LINKAGE FOR THE REHABILITATION OF UPPER-LIMB MOTION

机译:四杆连杆的分析与无源控制,以实现高肢运动的康复

获取原文

摘要

In the last two decades robotic rehabilitation research provided significant insight regarding the human-robot interaction, helped understand the process by which the impaired nervous system is retrained to better control movements, and led to the development of a number of mathematical and neurophysiological models that describe both the human motion and the robot control. The human-machine interaction in this research is typically achieved through robotic devices that are based on open kinematic chains. These devices have multiple degrees of freedom (DOF), sophisticated computer control, actuation and sensing. The flexibility of such approach enables the easy implementation of the various models and methods that have to be applied in order to maximize the potential of robotic rehabilitation. On the other hand, mechanisms with fewer DOF's that are based on closed kinematic chains can generate specific, yet adequate trajectories for the purposes of robotic rehabilitation. An example of such mechanisms is four-bar linkages that have only 1-DOF but yet can generate paths with complex kinematic characteristics. Design and analysis of four-bar linkages is used to achieve a variety of kinematics in terms of trajectory, velocity and acceleration profiles. The simplicity of these mechanisms is appealing and they can be used in rehabilitation due to their ability to replicate the motion of various human joints and limbs. The focus of the current work is to study the use of a four-bar linkage for generating the natural motion of upper-limb reaching tasks with the intention of using this mechanism for rehabilitation. This natural hand motion is described by a straight-line trajectory with a smooth bell-shaped velocity profile, which in turn is generated by the well-established Minimum Jerk Model (MJM). The goal is to design passive control elements in a four-bar linkage that generate the required torque for producing the MJM motion. The passive elements are two linear translational springs that act on the driving link of a straight line generating mechanism. A design optimization is used to minimize the difference between the desired and actual input spring torque while remaining within the predefined design space. The final arrangement is simulated in a Multibody Dynamics software that applies feed-forward dynamics to generate the mechanism's free response to the torque generated by the designed linear springs. The results of this work suggest that systematic design of a four-bar linkage can lead to simple mechanisms that can replicate the natural motion of reaching tasks. Relatively inexpensive linear springs can be employed in the design of passive-active controlled therapeutic mechanisms. Further investigation that combines analysis of both active and passive control/actuation elements must be performed for finalizing the control design. Simulations and analysis that incorporate various impaired hand responses must be also performed in order to finalize the design.
机译:在过去的二十几十年中,机器人康复研究提供了关于人机互动的重要知识,有助于了解受损神经系统被训练以更好地控制运动的过程,并导致了一些描述的数学和神经生理模型的发展人类运动和机器人控制。本研究中的人机相互作用通常通过基于开放运动链的机器人设备实现。这些器件具有多个自由度(DOF),复杂的计算机控制,致动和感测。这种方法的灵活性使得能够易于实现必须应用的各种模型和方法,以便最大化机器人康复的潜力。另一方面,基于闭合运动链的DOF的机制可以为机器人康复的目的产生特定但足够的轨迹。这种机构的一个例子是仅具有1-DOF的四杆连杆,但是可以产生具有复杂运动特性的路径。在轨迹,速度和加速度概况方面,使用四杆键的设计和分析来实现各种运动学。这些机制的简单性是吸引人的,它们可以在复原由于其复制各种人类关节和肢体的运动能力被使用。目前工作的重点是研究使用四条杆连杆,以产生上肢的自然运动,以达到任务,以便使用这种机制进行康复。这种自然的手动运动由具有平滑钟形速度曲线的直线轨迹描述,这又由良好的最小jerk模型(MJM)产生。目标是在四个条形连杆中设计被动控制元件,以产生用于产生MJM运动的所需扭矩。无源元件是两个线性平移弹簧,其作用于直线产生机构的驱动链路。设计优化用于最小化所需和实际输入弹簧扭矩之间的差异,同时保持在预定设计空间内。最终的布置是在多体动力学软件中模拟的,该软件应用前馈动态,以产生机构对由设计的线性弹簧产生的扭矩的自由响应。这项工作的结果表明,四杆连杆的系统设计可以导致可以复制达到任务的自然运动的简单机制。在无源主动控制的治疗机构的设计中可以采用相对便宜的线性弹簧。进一步调查,必须执行与主动和无源控制/致动元件的分析进行结合以完成控制设计。还必须进行包含各种受损手响应的模拟和分析,以便最终确定设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号