首页> 外文会议>International Conference on Quality in Research >Effect of Ge mole fraction on current, voltage and electric field characteristics of high doping nanoscale Si1?xGex/Si p-n diode
【24h】

Effect of Ge mole fraction on current, voltage and electric field characteristics of high doping nanoscale Si1?xGex/Si p-n diode

机译:Ge Mole分数对高掺杂纳米级Si 1的电流,电压和电场特性的影响X / INF> GE X / SI P-N二极管

获取原文

摘要

In this paper, we report the simulation of high doping nanoscale heterojunction diode, particularly Si1-xGex/Si p-n diode, using Cogenda Visual TCAD. In order to gain knowledge on electrical properties of this diode, we exhaustively simulate the effect of Ge mole fraction in SiGe material on current, voltage and electric field characteristics. The simulation covers Ge mole fraction of 0.2 to 0.7 in SiGe material as acceptor and Si material as donor. Both acceptor and donor have concentrations of 1020 per cm3 and areas of 10 × 10 nm2. Under forward bias voltage, higher Ge mole fraction will produce higher current. This phenomenon happens due to lower energy band gap at higher Ge mole fraction condition. Besides that, higher Ge mole fraction has lower energy difference between P side and N side of diode. According to the simulation result, Si0.8Ge0.2 has energy band gap about 0.8 eV, meanwhile Si0.3Ge0.7 has energy band gap about 0.5 eV. Lower energy band gap causes more electrons have enough energy to cross the junction. Meanwhile under reverse bias voltage, high doping nanoscale diode will produce infinitesimal current. At the junction, high doping nanoscale Si1-xGex/Si P-N diode also has lower electric field (measured at the center of diode) at higher Ge mole fraction. Under reverse bias voltage of -2 V, Si0.3Ge0.7 has maximum electric field about 5.89 × 106 V/m, meanwhile Si0.8Ge0.2 has maximum electric field about 6.17 × 106 V/m. We predict that Ge mole fraction has inversely proportional effect to the maximum electric field value. Therefore, we concluded that Ge mole fraction affects current, voltage and electric field characteristics of high doping nanoscale Si1-xGex/Si P-N diode.
机译:在本文中,我们报道了高掺杂的纳米级异质结二极管的模拟,特别是硅<子> 1-x 锗<子> X / Si的p-n二极管,使用Cogenda视觉TCAD。为了获得关于该二极管的电特性的知识,我们详尽模拟葛摩尔分数在SiGe材料上的电流,电压和电场特性的影响。 0.2模拟盖的Ge摩尔分数在0.7 SiGe材料作为受体和Si材料作为供体。两个受体和供体具有10 的浓度20 每平方厘米 3 和的10×10区域处 2 。下的正向偏置电压,更高的Ge摩尔分数会产生较高的电流。这种现象会发生由于在较高的葛摩尔分数条件以降低的能带隙。除此之外,高的Ge摩尔分数为P侧和二极管的N个侧部之间的较低能量差。根据模拟结果,硅<子> 0.8 锗<子> 0.2 具有大约0.8电子伏特,同时Si0.3Ge0.7具有约0.5eV的能带隙能量的带隙。较低的能带隙会导致更多的电子具有足够的能量穿过连接处。同时在反向偏置电压时,高掺杂的纳米级二极管将产生微小电流。交界处,高掺杂的纳米级硅<子> 1-x 锗<子> X /硅P-N二极管还具有在更高的Ge的摩尔分数较低的电场(在二极管的中心测量)。下的-2 V反向偏压,硅<子> 0.3 锗<子> 0.7 具有大约5.89×10 6 V /米,同时硅最大电场<子> 0.8 锗<子> 0.2 具有大约6.17×10 6 V / m的最大电场。我们预测,Ge的摩尔级分具有的最大电场值成反比的效果。因此,我们的结论是,锗的摩尔分数会影响电流,电压和高掺杂的纳米级硅<子>的电场特性的1-X 锗<子> X /硅P-N二极管。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号