首页> 美国卫生研究院文献>Applied and Environmental Microbiology >Photodissimilation of Fructose to H(inf2) and CO(inf2) by a Dinitrogen-Fixing Cyanobacterium Anabaena variabilis
【2h】

Photodissimilation of Fructose to H(inf2) and CO(inf2) by a Dinitrogen-Fixing Cyanobacterium Anabaena variabilis

机译:固定氮的蓝细菌鱼腥藻将果糖光异化为H(inf2)和CO(inf2)

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ability of cyanobacteria to serve as biocatalysts in the production of H(inf2) as a fuel and chemical feedstock was investigated with Anabaena variabilis. The results show that A. variabilis, when incubated under argon, dissimilated fructose to H(inf2) and CO(inf2) in a light-dependent reaction. The H(inf2) production had an obligate requirement for fructose and was heterocyst dependent, since NH(inf4)(sup+)-grown cultures lacking heterocysts failed to produce H(inf2). Differential inhibition studies with CO showed that nitrogenase is the main enzyme catalyzing the H(inf2) production. Net H(inf2) yield increased with increasing concentrations of fructose up to 10 mM in the medium. The average apparent conversion efficiency of fructose to H(inf2) (net H(inf2) produced/fructose removed from the medium) was about 10, although higher conversion efficiencies of 15 to 17 could be obtained during shorter periods and at optimum fructose concentrations. Under the same conditions, the ratio of CO(inf2) released to fructose removed from the medium was about 3.5, suggesting that only a fraction of the fructose carbon was completely oxidized to CO(inf2). Under conditions of carbon excess, which prevents H(inf2) uptake, the maximum ratio of H(inf2) to CO(inf2) was found to be 3.0. This is higher than the expected value of 2.0, indicating that water was also a source of reductant in this fructose-mediated H(inf2) production. Inhibition of H(inf2) evolution by 3-(3,4-dichlorophenyl)-1,1-dimethylurea confirmed a role for photosystem II in this process. The rate of H(inf2) production by A. variabilis SA1 was 46 ml h(sup-1) g (dry weight)(sup-1). This high rate was maintained for over 15 days. About 30% of this H(inf2) was derived from water (10 ml of H(inf2) h(sup-1) g [dry weight](sup-1)). These results show that filamentous, heterocystous cyanobacteria can serve as biocatalysts in the high-efficiency conversion of biomass-derived sugars to H(inf2) as a fuel source while simultaneously dissimilating water to H(inf2).
机译:用变色鱼腥藻研究了蓝细菌在作为燃料和化学原料的H(inf2)生产中用作生物催化剂的能力。结果表明,变异曲霉在氩气中孵育时,在光依赖性反应中将果糖异化为H(inf2)和CO(inf2)。 H(inf2)的生产对果糖有严格的要求,并且依赖于异囊藻,因为缺少异囊的NH(inf4)(sup +)生长的培养物无法产生H(inf2)。 CO的差异抑制研究表明,固氮酶是催化H(inf2)产生的主要酶。随着果糖在培养基中浓度的增加,净H(inf2)产量增加​​,直至10 mM。果糖向H(inf2)的平均表观转化效率(产生的净H(inf2)/从培养基中除去果糖)约为10,尽管在较短的时间和最佳果糖浓度下可以获得15至17的更高转化效率。在相同条件下,释放出的CO(inf2)与从培养基中除去的果糖的比率约为3.5,这表明只有一小部分果糖碳被完全氧化为CO(inf2)。在碳过量的情况下,这阻止了H(inf2)的吸收,发现H(inf2)与CO(inf2)的最大比例为3.0。这高于2.0的预期值,表明水也是果糖介导的H(inf2)生产中的还原剂来源。 3-(3,4-二氯苯基)-1,1-二甲基脲对H(inf2)的抑制作用证实了光系统II在此过程中的作用。变异曲霉SA1产生H(inf2)的速率为46 ml h(sup-1)g(干重)(sup-1)。如此高的比率维持了超过15天。这种H(inf2)约30%来自水(10 ml H(inf2)h(sup-1)g [干重](sup-1)。这些结果表明,丝状,异囊藻蓝细菌可以在生物质衍生糖高效转化为H(inf2)作为燃料源的同时,将水同化为H(inf2)作为生物催化剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号