首页> 外文会议>National SBIR/STTR conference >Systems biology and pathway engineering enable Saccharomyces cerevisiae to utilize C-5 and C-6 sugars simultaneously for cellulosic ethanol production
【24h】

Systems biology and pathway engineering enable Saccharomyces cerevisiae to utilize C-5 and C-6 sugars simultaneously for cellulosic ethanol production

机译:系统生物学和途径工程使酿酒酵母能够同时使用C-5和C-6糖,用于纤维素乙醇生产

获取原文

摘要

Saccharomyces cerevisiae is a traditional industrial workhorse for ethanol production. However, conventional ethanologenic yeast is superior in fermentation of hexose sugars (C-6) such as glucose but unable to utilize pentose sugars (C-5) such as xylose richly embedded in lignocellulosic biomass. In order to efficiently utilizing biomass sugars for lower cost cellulosic ethanol production, a significant effort has been taken worldwide for decades to improve xylose utilization capability of S. cerevisiae by genetic engineering. Yet challenges remain strong since the efficiency of the improved C-5 utilization is low and insufficient for low-cost cellulosic ethanol production. Scientists at ARS using tolerant yeast strain NRRL Y-50049 as a mother host created six (6) new genotypes of S. cerevisiae NRRL Y-50049-YXI-XUT4, -XUT5, -XUT6, -XUT7, -RGT2, and -SUT4 applying systems biology and pathway engineering approaches. Instead of a commonly used traditional fungal xylose utilization pathway, we introduced a bacterial xylose isomerase pathway into the yeast. We first synthesized a novel sequence of xylose isomerase (YXI ; GenBank Accession No. JF261697) containing optimized transcription codons for our yeast expression, and then integrated it into a specific chromosomal locus of the yeast to obtain a high level of constitutive expression, resulting in a daughter host strain NRRL Y-50049-YXI. We cloned and characterized six xylose transporter genes from Scheffersomyces stipitis, a natural xylose utilization yeast, to aid xylose transport and uptake. These heterologous xylose transporter genes were genetically engineered into the daughter host resulting in a set of new genotypes of S. cerevisiae. These newly developed industrial yeast strains are able to grow on xylose as sole carbon source and produce ethanol. When mixed sugars of glucose and xylose were added in the medium, all these new strains displayed a simulteneous utilization of C-5 and C-6 sugars and significantly improved xylose uptake and utilization for ethanol conversion. Among which, genotypes S. cerevisiae NRRL Y-50049-YXI-XUT7, -RGT2, and -SUT4 demonstrated superior fermentation capability in utilizing both sugars. In contrast with poor results observed from lab model strains, our research established the first example of using industrial yeast as a host for the next-generation biocatalyst development for advanced biofuels production. All these US patented strains are available for interested parties in collaborative efforts.
机译:Saccharomyces Cerevisiae是一种传统的乙醇生产工业主力。然而,常规的素质酵母在葡萄糖(C-6)的发酵中优于发酵,例如葡萄糖,但不能利用富含木质纤维素生物质的戊糖(C-5)如木糖含有木糖糖。为了有效地利用生物质糖,用于降低成本纤维素乙醇产量,已经在全球范围内采取了大量努力,几十年来提高基因工程的酿酒酵母的木糖利用能力。然而,由于改进的C-5利用率的效率低且不足地用于低成本的纤维素乙醇生产,因此挑战仍然很强。 ARS的科学家使用耐受酵母菌菌株NRRL y-50049作为母体宿主创建的六(6)个新基因型,酿酒酵母NRRL Y-50049-YXI-Xut4,-Xut5,-Xut6,-Xut7,-RGT2和-Sut4应用系统生物学和途径工程方法。而不是常用的传统真菌木糖利用途径,我们将细菌木糖异构酶途径引入酵母中。我们首先合成一种新的木糖异构酶(YXI; Genbank登录No.JF261697)的新序列,其含有优化的转录密码子,用于我们的酵母表达,然后将其集成到酵母的特定染色体轨迹中,得到高水平的本构表达,导致女儿宿主菌株NRRL y-50049-yxi。我们克隆并表征了Scheffersomyces智炎,自然木糖利用酵母的六种木糖转运蛋白基因,以帮助木糖运输和摄取。这些异源木糖转运蛋白基因被遗传地设计成女儿宿主,导致S.酿酒酵母的一组新的基因型。这些新开发的工业酵母菌株能够在木糖中生长作为唯一的碳源并产生乙醇。当在培养基中加入葡萄糖和木糖的混合糖时,所有这些新菌株显示出C-5和C-6糖的同时使用,并且显着改善木糖摄取和利用乙醇转化。其中,基因型S.Cerevisiae NRRL Y-50049-YXI-Xut7,-RGT2和-Sut4在利用两种糖时表现出优异的发酵能力。与实验室模型菌株观察到的结果相比,我们的研究建立了使用工业酵母作为宿主的第一个例子,为下一代生物燃料开发为先进的生物燃料生产。所有这些美国专利的菌株都可以在合作努力中获得有关各方。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号