首页> 外文会议>Metrology, Inspection, and Process Control for Microlithography >Solving next generation (1X node) metrology challenges using advanced CDSEM capabilities: tilt, high energy and backscatter imaging
【24h】

Solving next generation (1X node) metrology challenges using advanced CDSEM capabilities: tilt, high energy and backscatter imaging

机译:使用高级CDSEM功能解决下一代(1x节点)计量挑战:倾斜,高能量和反向散射成像

获取原文

摘要

Traditional metrology solutions are facing a range of challenges at the 1X node such as three dimensional (3D) measurement capabilities, shrinking overlay and critical dimension (CD) error budgets driven by multi-patterning and via in trench CD measurements. Hybrid metrology offers promising new capabilities to address some of these challenges but it will take some time before fully realized. This paper explores new capabilities currently offered on the in-line Critical Dimension Scanning Electron Microscope (CD-SEM) to address these challenges and enable the CD-SEM to move beyond measuring bottom CD using top down imaging. Device performance is strongly correlated with Fin geometry causing an urgent need for 3D measurements. New beam tilting capabilities enhance the ability to make 3D measurements in the front-end-of-line (FEOL) of the metal gate FinFET process in manufacturing. We explore these new capabilities for measuring Fin height and build upon the work communicated last year at SPIE. Furthermore, we extend the application of the tilt beam to the back-end-of-line (BEOL) trench depth measurement and demonstrate its capability in production targeting replacement of the existing Atomic Force Microscope (AFM) measurements by including the height measurement in the existing CDSEM recipe to reduce fab cycle time. In the BEOL, another increasingly challenging measurement for the traditional CD-SEM is the bottom CD of the self-aligned via (SAV) in a trench first via last (TFVL) process. Due to the extremely high aspect ratio of the structure secondary electron (SE) collection from the via bottom is significantly reduced requiring the use of backscatter electrons (BSE) to increase the relevant image quality. Even with this solution, the resulting images are difficult to measure with advanced technology nodes. We explore new methods to increase measurement robustness and combine this with novel segmentation-based measurement algorithm generated specifically for BSE images. The results will be contrasted with data from previously used methods to quantify the improvement. We also compare the results to electrical test data to evaluate and quantify the measurement performance improvements. Lastly, according to International Technology Roadmap for Semiconductors (ITRS) from 2013, the overlay 3 sigma requirement will be 3.3 nm in 2015 and 2.9 nm in 2016. Advanced lithography requires overlay measurement in die on features resembling the device geometry. However, current optical overlay measurement is performed in the scribe line on large targets due to optical diffraction limit. In some cases, this limits the usefulness of the measurement since it does not represent the true behavior of the device. We explore using high voltage imaging to help address this urgent need. Novel CD-SEM based overlay targets that optimize the restrictions of process geometry and SEM technique were designed and spread out across the die. Measurements are done on these new targets both after photolithography and etch. Correlation is drawn between the two measurements. These results will also be compared to conventional optical overlay measurement approaches and we will discuss the possibility of using this capability in high volume manufacturing.
机译:传统的测量解决方案面临的范围在1X挑战节点,例如三维(3D)测量功能,收缩通过多图案化和通过在沟槽CD测量从动覆盖和临界尺寸(CD)误差预算。混合计量报价有前途的新功能,以解决这些挑战,但还需要一段时间才完全实现。本文探讨的在线临界尺寸扫描电子显微镜(CD-SEM)来解决这些挑战,使CD-SEM能够超越测量采用自上而下的成像底部CD目前提供的新功能。器件的性能强烈翅片几何形状造成的三维测量,迫切需要相关。新波束倾斜能力提高,使在制造的金属栅极FinFET工艺的在前端的行的(FEOL)3D测量的能力。我们探索在去年SPIE沟通工作测量翅片高度和建造这些新功能。此外,我们的倾斜束的应用延伸到后端的行(BEOL)沟槽深度测量并证明其能力在生产中通过在高度测量靶向更换现有的原子力显微镜(AFM)测量的现有CDSEM配方,以减少工厂的周期时间。在BEOL,因为传统的CD-SEM另一越来越具有挑战性的测量是底部CD的自对准通孔最后(TFVL)过程通过在沟槽中的第一(SAV)。由于从通孔底部的结构的二次电子(SE)集合的极高纵横比被减小显著不需要使用反向散射电子(BSE)的增加了相关的图像质量。即使有这样的解决方案,所产生的图像难以用先进技术节点来衡量。我们探索新的方法,以提高测量的鲁棒性和专为BSE图像生成的新的基于分割的测量算法结合于此。结果将与以前使用的方法的数据来量化的改善进行对比。我们还比较结果电气测试数据来评估和量化测量的性能改进。最后,根据从2013国际半导体技术发展蓝图(ITRS),覆盖3西格玛要求将是在2015年3.3纳米和2.9纳米到2016年先进的光刻需要在特征类似的器件的几何形状在模重叠测量。然而,目前的光重叠测量在上大型目标划线由于光学衍射极限进行。在一些情况下,这限制了测量的有效性,因为它不表示设备的真实行为。我们探索采用高电压成像,以帮助解决这个迫切需要。新型CD-SEM基于叠加层优化的过程几何形状和SEM技术设计的限制,并在整个模具摊开目标。测量光刻和蚀刻后都对这些新的目标来完成。相关性是两个测量之间绘制。这些结果也将被相对于常规的光学重叠测量方法和我们将讨论在大批量制造使用这种能力的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号