首页> 外文会议>International Conference on Simulation and Experiments in Heat and Mass Transfer >Study of longitudinal heat transfer in low temperature heat pipes with axial grooves and discrete metal fibres for space thermal control systems
【24h】

Study of longitudinal heat transfer in low temperature heat pipes with axial grooves and discrete metal fibres for space thermal control systems

机译:具有轴向槽和离散金属纤维的低温热管纵向传热研究空间热控制系统

获取原文

摘要

Heat pipe technology became an integral part of the thermal control systems of space missions to transfer heat and control the temperature. The selection, design and the integration of heat pipes in space hardware requires the knowledge about their thermal performance. One of the major characteristics is the longitudinal resistance. This paper presents the experimental results of the longitudinal heat transfer in constant and variable thermal resistance heat pipes (HP) with diameters between 0.006 to 0.012 m: "a") aluminium - ammonia HP with axial grooved capillary structure; "b") stainless steel - methanol HP with stainless steel discrete metal fibre capillary structure; "c") copper - methanol HP with copper discrete metal fibre capillary structure. The tests have been performed within a wide range of operation parameters: heat sink temperature from -75 up to +60°C, the transferred heat power from 0.5 up to 100 W, the axial heat flux density up to 250 W/cm~2. As characteristic parameter the longitudinal thermal resistance R_(HP)=(T_(ev)-T_(con))/Q_(HP) is used, where Q_(HP) is the transferred heat power and T_(ev) and T_(con) are the average temperatures of the heat input and output zones, respectively. For the HPs "a" the parameter R_(HP) varies from 0.06 to 0.045 K/W. The change of T_(con) has no essential impact on the HP thermal resistance. For the HP "b", R_(HP) changes from 80 to 4 K/W. The physical basis of such behaviour is related to the formation of vapor and non-condensable gas boundary in the coldest part of the heat pipe and, as consequence, a heat transfer intensity variation. The HPs "c" have shown essential impact of T_(con) on resistance, which varies from 70 to 0.4 K/W. The physical basis of such behaviour is connected a change of the vapor flow regime in the inner vapor space and with change of the inner heat transfer intensity. The comparison of the longitudinal heat transfer characteristics of different types of heat pipes allows us to define their functional abilities in thermal control systems (TCS) for different space applications and to use these data in TCS mathematic models.
机译:热管技术成为空间任务热控制系统的组成部分,以转移热量并控制温度。空间硬件中热管的选择,设计和集成需要了解其热性能。其中一个主要特征是纵向抗性。本文介绍了恒定和可变热阻热管(HP)的纵向热传递的实验结果,直径在0.006至0.012米:“A”)铝 - 氨基 - 氨基 - 氨基上具有轴向沟槽毛细管结构; “B”)不锈钢 - 具有不锈钢离散金属纤维毛细管结构的甲醇HP; “C”)铜 - 甲醇HP铜离散金属纤维毛细管结构。该试验已经在各种操作参数中进行:散热温度从-75到+ 60°C,转移的热功率从0.5到100W,轴向热通量密度高达250W / cm〜2 。作为特征参数,使用纵向热阻R_(HP)=(T_(EV)-T_(CON))/ Q_(HP),其中Q_(HP)是转移的热功率和T_(EV)和T_(孔)分别是热输入和输出区的平均温度。对于HPS“A”,参数R_(HP)的变化从0.06到0.045 k / w。 T_(CON)的变化对HP热阻没有必要的影响。对于HP“B”,R_(HP)将从80变为4 k / w。这种行为的物理基础与热管的最冷的部分中的蒸汽和不可冷凝气体边界的形成有关,并且随后,传热强度变化。 HPS“C”显示了T_(CO)对电阻的基本影响,其变化从70到0.4 k / w。这种行为的物理基础是在内蒸汽空间中的蒸汽流动状态的变化以及内部传热强度的变化。不同类型热管的纵向传热特性的比较允许我们在热控制系统(TCS)中为不同的空间应用定义它们的功能能力,并在TCS数学模型中使用这些数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号