【24h】

Large Scale MD Simulations of Nucleation

机译:大规模MD模拟成核

获取原文

摘要

We present preliminary results from large scale molecular dynamics (MD) simulations of homogenous vapor to liquid nucleation. The simulations contain between one and eight billion Lennard-Jones atoms and were run for up to 56 million time-steps. The large particle numbers (over 10~4 times larger than previous simulations, see e.g. [2]) have several advantages: i) Resolving and quantifying nucleation at low supersaturations becomes possible within an accessible number of simulation time-steps, in spite of the very slow nucleation. ii) Even after forming many stable droplets the depletion of the vapor phase is negligible, i.e. the supersaturation remains constant during the simulations. iii) Excellent statistics on liquid droplet abundances and microscopic properties over a wide range in droplet sizes. iv) Simulations can be run efficiently on a large number of cpus. First, direct comparisons to laboratory experiments[6] are now possible: we find excellent agreement in the nucleation rates at kT = 0.3ε and somewhat lower rates in the simulations at kT = 0.4ε. At low temperatures, modified classical nucleation theory significantly underestimates the nucleation rates (by up to 10~9) and at kT = 1.0ε it overestimates the nucleation rates by up to 10~5. The semi-phenomenological model[3] matches the nucleation rates and the cluster size distributions found in previous MD simulations at higher supersaturations quite well[2]. But at the lower super-saturations probed here, its predictions differ from the MD results by large factors (up to 10~(3.5)). We will also present MD results on cluster size distributions, free energy functions, sticking probabilities and condensation and evaporation rates. The microscopic properties (shapes, density profiles, binding energies, etc.) of the large numbers of droplets formed are presented in a separate contribution to this conference (Angelil et. al).
机译:我们呈现来自大规模分子动力学(MD)模拟的均匀蒸汽与液体成核的初步结果。模拟包含一个和八亿的Lennard-Jones原子,并运行高达5600万的时间步。大的粒子数(比以前的模拟超过10〜4倍,参见例如[2])具有几个优点:i)在低超额饱和度下解决和量化成核在可访问的模拟时间步骤中成为可能,尽管如此非常慢的成核。 II)即使在形成许多稳定的液滴之后,蒸汽相的耗竭即使是忽略不计,即在模拟期间过饱和保持恒定。 III)液滴丰度和微观特性在液滴尺寸宽范围内的优异统计。 iv)可以在大量CPU上有效地运行模拟。首先,现在可以直接比较实验室[6]:我们在kt =0.3ε处的成核速率和kt =0.4ε的模拟中的速率很高。在低温下,改良的经典成核理论明显低估了成核率(高达10〜9),并且在Kt =1.0ε处,它高达10〜5的成核速率。半现象学模型[3]匹配成核速率,并且在较高的超饱和度上在较高的MD模拟中发现的簇大小分布非常好[2]。但在这里探测的较低的超级饱和状态下,其预测与大量因素的MD结果不同(最多10〜(3.5))。我们还将在集群大小分布,自由能功能,粘附概率和凝结和蒸发速率上呈现MD结果。形成了大量液滴的微观特性(形状,密度分布,粘合能量等)在本会议(Angelil等)的单独贡献中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号