【24h】

Large Scale MD Simulations of Nucleation

机译:大规模MD模拟成核

获取原文

摘要

We present preliminary results from large scale molecular dynamics (MD) simulations of homogenous vapor to liquid nucleation. The simulations contain between one and eight billion Lennard-Jones atoms and were run for up to 56 million time-steps. The large particle numbers (over 10~4 times larger than previous simulations, see e.g. [2]) have several advantages: i) Resolving and quantifying nucleation at low supersaturations becomes possible within an accessible number of simulation time-steps, in spite of the very slow nucleation. ii) Even after forming many stable droplets the depletion of the vapor phase is negligible, i.e. the supersaturation remains constant during the simulations. iii) Excellent statistics on liquid droplet abundances and microscopic properties over a wide range in droplet sizes. iv) Simulations can be run efficiently on a large number of cpus. First, direct comparisons to laboratory experiments[6] are now possible: we find excellent agreement in the nucleation rates at kT = 0.3ε and somewhat lower rates in the simulations at kT = 0.4ε. At low temperatures, modified classical nucleation theory significantly underestimates the nucleation rates (by up to 10~9) and at kT = 1.0ε it overestimates the nucleation rates by up to 10~5. The semi-phenomenological model[3] matches the nucleation rates and the cluster size distributions found in previous MD simulations at higher supersaturations quite well[2]. But at the lower supersaturations probed here, its predictions differ from the MD results by large factors (up to 10~(3.5)). We will also present MD results on cluster size distributions, free energy functions, sticking probabilities and condensation and evaporation rates. The microscopic properties (shapes, density profiles, binding energies, etc.) of the large numbers of droplets formed are presented in a separate contribution to this conference (Angélil et. al).
机译:我们提出从大规模分子动力学(MD)均质气相到液相的成核模拟初步结果。仿真包含伦纳德 - 琼斯原子一个和八个十亿之间并已经持续了5600万的时间步骤。大粒子数(超过10〜4倍,比以前的模拟较大的,例如参见[2])具有若干优点:1)解决,并在低过饱和量化成核的模拟时间步长可访问的次数内成为可能,尽管该很慢核。 ⅱ)即使形成许多稳定的液滴汽相中的耗尽后是可忽略的,即过饱和保持模拟期间保持恒定。 ⅲ)在液滴丰度和在很宽的范围内的液滴尺寸微观特性优异的统计信息。 ⅳ)模拟可以有效对大量的CPU上运行。首先,直接比较实验室实验[6]现在是可能的:我们发现在成核率在KT =0.3ε在KT =0.4ε非常吻合,有点低利率的模拟。在低温下,改性经典成核理论显著低估了成核速率(高达10〜9),并在KT =1.0ε它由可达10〜5高估了成核速率。半唯象模型[3]匹配在较高过饱和以前MD模拟发现非常好[2]所述的成核速率和簇的大小分布。但在较低的过饱和探测这里,它的预测从MD结果大因素(可达10〜(3.5))是不同的。我们还将展示MD结果集群大小分布,自由能的功能,坚持概率和冷凝和蒸发速度。的大量形成的液滴的微观特性(形状,密度分布,结合能等)在该会议的单独贡献(Angélil等人)介绍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号