首页> 外文会议>AAS/AIAA Spaceflight Mechanics Meeting >DESIGN OF SATELLITE CONTROL ALGORITM USING THE STATE-DEPENDENT RICCATI EQUATION AND KALMAN FILTER
【24h】

DESIGN OF SATELLITE CONTROL ALGORITM USING THE STATE-DEPENDENT RICCATI EQUATION AND KALMAN FILTER

机译:使用状态依赖式Riccati方程和卡尔曼滤波器设计卫星控制算法

获取原文

摘要

A properly attitude control algorithm design and test procedure can dramatically minimize space mission costs by reducing the number of errors that can be transmitted to the next phase of the project. Besides, when attitude control algorithm problems are discovered on-orbit the mission or at least part of it can be lost. One way to increase confidence in the control algorithm is its experimental validation through prototypes. The Space Mechanics and Control Division (DMC) of INPE is constructing a 3D simulator to supply the conditions for implementing and testing satellite hardware and software. The 3D simulator can accommodate various satellites components; like sensors, actuators, computers and its respective interface and electronic. Depending on the manoeuvre the 3D simulator plant can be highly non-linear and if its inertia parameters are not well determined the plant can also present some kind of uncertainty. As a result, controller designed by linear control technique can have its performance and robustness degraded. This paper presents the application of the State-Dependent Riccati Equation (SDRE) method in conjunction with Kalman filter to design and test a attitude control algorithm for a 3D satellite simulator. The control strategy is based on gas jets and reaction wheel torques to perform large angle manoeuvre in three axes. The simulator model allows investigating the dynamics and the control system taking into account effects of the plant non-linearities and system noise. Initially, a simple comparison between the LQR and SDRE controller is performed. Practical applications are presented to address problems like presence of noise in process and measurements and incomplete state information using Kalman filter technique. Simulation has shown the performance and robustness of the SDRE controller applied for angular velocity reduction associated with stringent pointing requirement.
机译:态度控制算法设计和测试过程可以通过减少可以传输到项目的下一阶段的错误数来显着降低空间任务成本。此外,当在轨道上发现态度控制算法问题时,使命或至少部分可能丢失。增加控制算法置信度的一种方法是通过原型的实验验证。 INPE的空间力学和控制部(DMC)正在构建3D模拟器,为实现和测试卫星硬件和软件提供条件。 3D模拟器可以容纳各种卫星组件;像传感器,执行器,计算机及其相应的界面和电子。取决于机动,3D模拟器厂可以高度非线性,如果其惯性参数并不确定植物也可以呈现某种不确定性。结果,由线性控制技术设计的控制器可以具有其性能和鲁棒性降低。本文介绍了国家依赖的Riccati方程(SDRE)方法与卡尔曼滤波器的应用设计和测试3D卫星模拟器的姿态控制算法。控制策略基于气体喷射和反作用轮扭矩,以在三个轴上执行大角度操纵。模拟器模型允许研究植物非线性和系统噪声的效果的动态和控制系统。最初,执行LQR和SDRE控制器之间的简单比较。提出了使用Kalman滤波技术解决过程和测量中的噪声等问题等问题的解决问题。模拟显示了施加的SDRE控制器的性能和稳健性,用于与严格指向要求相关的角速度降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号