首页> 外文期刊>Shock and vibration >Application of the State-Dependent Riccati Equation and Kalman Filter Techniques to the Design of a Satellite Control System
【24h】

Application of the State-Dependent Riccati Equation and Kalman Filter Techniques to the Design of a Satellite Control System

机译:状态相关的里卡提方程和卡尔曼滤波技术在卫星控制系统设计中的应用

获取原文
       

摘要

Design of Satellite Attitude Control System (ACS) that involves plant uncertainties and large angle manoeuvres following a stringent pointing control, may require new non-linear control techniques in order to have adequate stability, good performance and robustness. In that context, experimental validation of new non-linear control techniques through prototypes is the way to increase confidence in the controller designed. The Space Mechanics and Control Division (DMC) of INPE is constructing a 3-D simulator to supply the conditions for implementing and testing satellite ACS hardware and software. The 3-D simulator can accommodate various satellites components; like sensors, actuators, computers and its respective interface and electronic. Depending on the manoeuvre the 3-D simulator plant can be highly non-linear and if the simulator inertia parameters are not well determined the plant also can present some kind of uncertainty. As a result, controller designed by linear control technique can have its performance and robustness degraded, therefore controllers designed by new non-linear approach must be considered. This paper presents the application of the State-Dependent Riccati Equation (SDRE) method in conjunction with Kalman filter technique to design a controller for the DMC 3-D satellite simulator. The SDRE can be considered as the non-linear counterpart of Linear Quadratic Regulator (LQR) control technique. Initially, a simple comparison between the LQR and SDRE controller is performed. After that, practical applications are presented to address problems like presence of noise in process and measurements and incomplete state information. Kalman filter is considered as state observer to address these issues. The effects of the plant non-linearities and noises (uncertainties) are considered in the performance and robustness of the controller designed by the SDRE and Kalman filter. The 3-D simulator simulink-based model has been developed to perform the simulations examples to investigate the SDRE controller performance using the states estimated by the Kalman filter. Simulations have demonstrated the validity of the proposed approach, once the SDRE controller has presented good stability margin, great performance and robustness.
机译:卫星姿态控制系统(ACS)的设计涉及工厂不确定性和严格的指向控制后的大角度操纵,可能需要新的非线性控制技术才能具有足够的稳定性,良好的性能和鲁棒性。在这种情况下,通过原型对新的非线性控制技术进行实验验证是增加对所设计控制器的信心的方法。 INPE的空间力学与控制部(DMC)正在构建3D仿真器,以提供实施和测试卫星ACS硬件和软件的条件。 3-D仿真器可以容纳各种卫星组件。例如传感器,执行器,计算机及其相应的界面和电子设备。根据操作,3-D仿真器设备可能是高度非线性的,如果不能很好地确定仿真器惯性参数,则设备也可能会出现某种不确定性。结果,通过线性控制技术设计的控制器可能会降低其性能和鲁棒性,因此必须考虑使用新的非线性方法设计的控制器。本文介绍了状态相关Riccati方程(SDRE)方法与Kalman滤波技术结合使用的方法,以设计DMC 3-D卫星模拟器的控制器。 SDRE可被视为线性二次调节器(LQR)控制技术的非线性对应物。最初,执行LQR和SDRE控制器之间的简单比较。此后,提出了一些实际应用来解决诸如过程和测量中存在噪声以及状态信息不完整之类的问题。卡尔曼滤波器被认为是解决这些问题的状态观察者。在SDRE和Kalman滤波器设计的控制器的性能和鲁棒性中考虑了工厂非线性和噪声(不确定性)的影响。已开发出基于Simulink的3-D仿真器模型,以执行仿真示例,以使用卡尔曼滤波器估计的状态来研究SDRE控制器的性能。仿真结果表明,一旦SDRE控制器具有良好的稳定性裕度,出色的性能和鲁棒性,该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号