首页> 外文会议>ASME Bioengineering Conference >FLUID-STRUCTURE INTERACTION PREDICTIONS OF ASCENDING AORTA HEMODYNAMICS UNDER TRICUSPID AND BICUSPID AORTIC VALVE FLOWS
【24h】

FLUID-STRUCTURE INTERACTION PREDICTIONS OF ASCENDING AORTA HEMODYNAMICS UNDER TRICUSPID AND BICUSPID AORTIC VALVE FLOWS

机译:三尖瓣和双囊主动脉瓣流下升压主动脉血流动力学的流体结构相互作用预测

获取原文

摘要

The bicuspid aortic valve (BAV) is the most common congenital cardiac anomaly and is present in 2-3% of the general population. As compared to the normal tricuspid aortic valve (TAV) which consists of three leaflets, the most prevalent type-I BAV morphology forms with two as a result of left-/right-coronary cusp fusion. While the BAV anatomy may not intrinsically hamper valvular function, it is associated with a spectrum of secondary aortopathy such as aortic dilation and subsequent dissection. The dilation and thinning of the ascending aorta downstream of a BAV is marked by structural wall abnormalities including smooth muscle cell depletion, elastic fiber degeneration and abnormal extracellular matrix remodeling, which localize to the convexity of the aortic wall. While BAV aortopathy has been historically linked to the same congenital defect as that responsible for the BAV morphogenesis, the abnormal BAV hemodynamics has emerged as a potential alternate or coincident etiology. Specifically, given the particular sensitivity of the arterial wall to its surrounding hemodynamics, the fluid shear stress abnormalities observed on the disease-prone convexity of the BAV ascending aorta may trigger pathological remodeling processes that ultimately lead to dilation and dissection. In light of these observations we hypothesized that type-I BAVs generates fluid shear stress abnormalities in regions of the ascending aorta prone to aortic dilation. Therefore, the objective of this study was to compare the native hemodynamic stresses on the convexity (i.e., region prone to dilation) of an ascending aorta subjected to TAV and type-I BAV flows using three-dimensional (3D) fluid-structure interaction (FSI) modeling.
机译:双囊主动脉瓣(BAV)是最常见的先天性心脏异常,占总人群的2-3%。与由三个小叶组成的正常三尖瓣主动脉瓣(TAV)相比,由于左/右冠心病融合而具有两个最普遍的类型BAV形态形式。虽然BAV解剖学可能没有本质上妨碍瓣膜功能,但它与诸如主动脉扩张和随后的剖面的次级性疗法的光谱相关。 BAV下游的升高的升高和稀疏由结构壁异常标记,包括平滑的肌肉细胞耗尽,弹性纤维退化和异常细胞外基质重塑,其定位于主动脉壁的凸起。虽然BAV AORTOPATHY在历史上与同样的先天性缺陷相同,但对BAV形态发生的负责,但异常的BAV血液动力学已成为潜在的交替或巧合的病因。具体地,鉴于动脉壁对其周围血流动力学的特定敏感性,对BAV升性主动脉的疾病 - 俯卧凸起观察到的流体剪切应力异常可能引发最终导致扩张和解剖的病理重塑过程。鉴于这些观察结果,我们假设I型BAMS在俯卧位的升高的主动脉区域中产生流体剪切应力异常。因此,本研究的目的是将使用三维(3D)流体结构相互作用(3D)流体结构相互作用对经受TAV和型BAV流动的凸起(即,易于扩张的区域)对凸起(即,易于扩张)的天然血流动力学应力进行比较FSI)建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号