首页> 外文会议>ASME Bioengineering Conference >OSCILLATORY FLUID FLOW AFFECTS THE OSTEOGENIC DIFFERENTIATION OF HUMAN BONE MARROW STROMAL CELLS IN A PRIMARY CILSUM DEPENDENT MANNER
【24h】

OSCILLATORY FLUID FLOW AFFECTS THE OSTEOGENIC DIFFERENTIATION OF HUMAN BONE MARROW STROMAL CELLS IN A PRIMARY CILSUM DEPENDENT MANNER

机译:振荡流体流动影响人骨髓基质细胞以初级纤毛依赖性方式的成骨分化

获取原文

摘要

Osteoporosis is a debilitating bone disease which occurs in part when bone marrow stromal cells (BMSCs) fail to produce sufficient numbers of osteoblasts to counteract bone resorption by osteoclasts. The majority of research to date has described chemically induced differentiation of BMSCs but a key regulator of stromal cell differentiation is physical loading. BMSCs experience both hydrostatic pressure and fluid flow within the marrow cavity and such modes of loading have been shown to significantly alter gene expression in vitro [1,2]. In particular, the effect of oscillatory fluid flow (OFF) induced shear stress results in the upregulation of osteogenic genes in pre-osteoblastic cells; however the effect of this mode of loading is not well characterized in human MSCs (hMSCs) [3]. Understanding how MSCs translate a mechanical stimulus into a chemical response is an active area of research. Primary cilia are immotile, solitary cellular extensions that protrude from the apical surface of nearly every cell in the human body. Recent studies have revealed the primary cilium to be a multifunctional antenna, sensing both mechanical (fluid flow, pressure, touch, vibration) and chemical (light, odor, growth factor) changes in the extracellular environment [4]. In particular, primary cilia have been shown to act as fluid flow sensors in tissues such as kidney, liver and bone where fluid flow deflects the cilium, triggering signaling cascades within the cell [4,5]. Furthermore, primary cilia have recently been shown to act as a pivotal switch guiding biochemically induced lineage commitment in hMSCs [6]. However, to date their role in stem cell mechanotransduction is unknown. In this study we aimed to investigate the effect of OFF on the osteogenic gene expression of hMSCs and determine whether primary cilia act to translate this mechanical stimulus into a biochemical response.
机译:骨质疏松症是一种衰弱的骨疾病,其部分发生在骨髓基质细胞(BMSCs)未产生足够数量的成骨细胞以抵抗破骨细胞的骨吸收中时发生。大多数研究迄今为止已经描述了BMSC的化学诱导的分化,但基质细胞分化的关键调节剂是物理载荷。 BMSCs在骨髓腔内经历静水压力和流体流动,并且已经显示出这种加载方式显着改变体外的基因表达[1,2]。特别地,振荡流体流动(OFF)诱导的剪切应力的效果导致预骨细胞中骨质形成基因的上调;然而,这种载荷模式的效果在人体MSCs(HMSCs)中的表征并不充分表征[3]。了解MSCS如何将机械刺激转化为化学反应是一个活跃的研究领域。原发性纤毛是Improotile的,孤立的细胞延伸部分,其从人体中几乎每个细胞的顶端表面突出。最近的研究揭示了主要纤毛,是多功能天线,感测机械(流体流动,压力,触摸,振动)和化学(光,气味,生长因子)的细胞外环境变化[4]。特别地,已被证明初级纤毛作为肾脏,肝脏和骨的组织中的流体流动传感器,其中流体流动偏转纤维,触发细胞内的信号级联[4,5]。此外,最近已被证明初级纤毛作为枢转开关引导生物化学诱导的血管切换在HMSC中的谱系[6]。然而,迄今为止它们在干细胞机制中的作用是未知的。在这项研究中,我们旨在探讨OFF对HMSCs的成骨基因表达的影响,并确定原发性纤毛是否是将这种机械刺激转化为生化反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号