首页> 外文会议>Symposium on the Application of Geophysics to Engineering and Environmental Problems >IDENTIFYING FLOW BARRIERS AND SUBSURFACE FLOW PATHS AFFECTING RETURN FLOW FROM FLOOD IRRIGATION USING TIME-LAPSE BOREHOLE NMR AND ERT
【24h】

IDENTIFYING FLOW BARRIERS AND SUBSURFACE FLOW PATHS AFFECTING RETURN FLOW FROM FLOOD IRRIGATION USING TIME-LAPSE BOREHOLE NMR AND ERT

机译:使用时间流逝钻孔NMR和ERT识别影响从洪水冲洗的返回流量的流动障碍和地下流动路径

获取原文

摘要

Flood irrigation is one of the most common irrigation techniques in the Intermountain West, accounting for 42 percent of all of the irrigated land in the US in 2006. With water resources available for irrigation under threat of overuse, sustainable management of these resources is important. An important factor when managing water resources is quantifying the amount of applied water that returns back to the stream - return flow - and the timing at which this occurs. Current practice is to assume return flow estimates as a straight percentage of applied irrigation. Local soils and subsurface flow dynamics are rarely taken into account. Breakthrough curves, staining techniques and soil structure models have been used to predict infiltration rates and the effect of preferential flow paths during irrigation in the field; however, these conventional techniques lack spatial or temporal resolution to address the detail with which infiltration through preferential flow paths happen. We monitored the subsurface using time-lapse ERT, in combination with time-lapse borehole NMR and soil moisture measurements under wetting and drying experiments at field scale, following regular field irrigation schedules. Combining these techniques we are able to track spatial and temporal heterogeneous changes in soil moisture down to 10 m. We observed subsurface processes related to heterogeneity and preferential flow paths cause irregular wetting of the subsurface both deeper below the surface and at faster rates than would be predicted under assumption of homogeneous piston flow. The application of borehole NMR during irrigation field experiments, merged with more temporal dense time-lapse resistivity observations at a larger spatial extent, enables direct quantification of dynamic redistribution of soil moisture in the vadose zone at field scale. Incorporation of this knowledge into larger scale irrigation analysis will improve accuracy of predictions of water use dynamics and return flow under flood irrigation.
机译:洪水灌溉是西部灌溉技术中最常见的灌溉技术之一,占2006年美国所有灌溉土地的42%。在过度使用威胁下提供水资源,对这些资源的可持续管理很重要。管理水资源时的一个重要因素是量化返回流返回流的施加水量 - 以及这发生的时间。目前的做法是假设返回流程估计作为施加灌溉的直率。局部土壤和地下流动动态很少考虑。突破性曲线,染色技术和土壤结构模型用于预测渗透速率和优先流动路径在田间灌溉过程中的效果;然而,这些传统技术缺乏空间或时间分辨率来解决通过优先流动路径的渗透而发生的细节。我们使用延时钻孔NMR和土壤水分测量在普通现场灌溉时间表之后,使用延迟钻孔NMR和土壤湿度测量组合监测地下。结合这些技术,我们能够跟踪土壤水分的空间和时间异质变化下降至10米。我们观察到与异质性和优先流动路径相关的地下过程,导致表面下方的地下的不规则润湿,而不是在均匀活塞流的假设下预测的更快的速率。井孔NMR在灌溉场实验中的应用,以更大的空间程度合并了与更常时的致密时间流失电阻率观察,能够直接定量在现场规模的散囊区中土壤水分的动态再分布。将这些知识纳入更大的尺度灌溉分析将提高水利用动力学预测的准确性和洪水灌溉下的返回流程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号