首页> 外文会议>Intelligent Systems for Molecular Biology >Grouped graphical Granger modeling for gene expression regulatory networks discovery
【24h】

Grouped graphical Granger modeling for gene expression regulatory networks discovery

机译:基因表达监管网络发现分组的图形格子模型

获取原文

摘要

We consider the problem of discovering gene regulatory networks from time-series microarray data. Recently, graphical Granger modeling has gained considerable attention as a promising direction for addressing this problem. These methods apply graphical modeling methods on time-series data and invoke the notion of 'Granger causality' to make assertions on causality through inference on. time-lagged effects. Existing algorithms, however, have neglected an important aspect of the problem-the group structure among the lagged temporal variables naturally imposed by the time series they belong to. Specifically, existing methods in computational biology share this shortcoming, as well as additional computational limitations, prohibiting their effective applications to the large datasets including a large number of genes and many data points. In the present article, we propose a novel methodology which we term 'grouped graphical Granger modeling method', which overcomes the limitations mentioned above by applying a regression, method suited for high-dimensional and large data, and by leveraging the group structure among the lagged temporal variables according to the time series they belong to. We demonstrate the effectiveness of the proposed methodology on both simulated and actual gene expression data, specifically the human cancer cell (Hake S3) cycle data. The simulation results show that the proposed methodology generally exhibits higher accuracy in recovering the underlying causal structure. Those on the gene expression data demonstrate that it leads to improved accuracy with respect to prediction of known links, and also uncovers additional causal relationships uncaptured by earlier works.
机译:我们考虑从时间序列微阵列数据发现基因监管网络的问题。最近,图形格兰杰建模是对解决这一问题的有希望的方向来说,这一型观点得到了相当大的关注。这些方法在时间序列数据上应用图形建模方法,并通过推断调用“格兰杰因果关系”的概念对因果关系进行断言。时间滞后的效果。然而,现有算法忽略了问题的一个重要方面 - 由它们所属的时间序列自然施加的滞后时间变量中的群组结构。具体而言,计算生物学中的现有方法共享这种缺点,以及额外的计算限制,禁止其有效应用于包括大量基因和许多数据点的大型数据集。在本文中,我们提出了一种新的方法,该方法是我们术语“分组的图形格子建模方法”,其通过应用回归,适用于高维和大数据的方法来克服上述限制,以及利用组结构根据它们所属的时间序列滞后的时间变量。我们证明了所提出的方法对模拟和实际基因表达数据的有效性,特别是人癌细胞(Hake S3)循环数据。仿真结果表明,所提出的方法通常在恢复潜在的因果结构方面表现出更高的准确性。基因表达数据上的那些表明,它导致关于预测已知链接的准确性,并且还揭示了早期作品未被造成的额外因果关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号