首页> 外文会议>SPIE Conference on Laser Applications in Microelectronic and Optoelectronic Manufacturing >Enhancement of cleaning efficiency by geometrical confinement ofplasma expansion in the laser shock cleaning process for nanoscalecontaminant removal
【24h】

Enhancement of cleaning efficiency by geometrical confinement ofplasma expansion in the laser shock cleaning process for nanoscalecontaminant removal

机译:通过对激光冲击清洁过程中的几何监禁来提高清洁效率的纳米型污水清洁方法

获取原文

摘要

It has been shown that the laser shock cleaning (LSC) process is effective for removing nanoscale particles from solid surfaces and thus has various potential applications in microelectronic manufacturing. In this work, we propose a simple method to amplify the shock wave intensity generated by laser-induced breakdown (LIB) of air. The suggested scheme employs a plane shock wave reflector which confines the plasma expansion in one direction. As the half of the LIB-induced shock wave is reflected by the reflector, the intensity of the shock wave propagating in the opposite direction is increased significantly. Accordingly, the enhanced shock wave can remove smaller particles from the surface than the existing LSC process. The LSC process under geometrical confinement is analyzed both theoretically and experimentally. Numerical computation of the plasma/shock behavior shows about two times pressure amplification for the plane geometry. Experiments confirm that the shock wave intensity is enlarged by the effect of geometrical confinement of the plasma and shock wave. The result of cleaning tests using polystyrene particles demonstrates that the particle removal efficiency increases by the effect of geometrical confinement.
机译:已经表明,激光冲击清洁(LSC)工艺对于从固体表面除去纳米级粒子,因此在微电子制造中具有各种潜在的应用。在这项工作中,我们提出了一种简单的方法,可以扩增激光诱导的空气击穿(Lib)产生的冲击波强度。建议的方案采用平面冲击波反射器,其在一个方向上限制等离子体膨胀。随着LIB引起的冲击波的一半被反射器反射,在相反方向上传播的冲击波的强度显着增加。因此,增强的冲击波可以从表面上除去较小的颗粒而不是现有的LSC工艺。理论上和实验在几何限制下的LSC过程。等离子体/冲击行为的数值计算显示平面几何的两个倍增压力放大。实验证实,通过等离子体和冲击波的几何限制的影响,对冲击波强度扩大。使用聚苯乙烯颗粒清洁试验的结果表明,颗粒去除效率随几何限制的影响而增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号