首页> 外文会议>International Conference on Recirculating Aquaculture >Humic Acid Stimulation of Growth and Optimization of Biochemical Profiles on Two Microalgal Species Proposed asLive Feeds in Aquaculture
【24h】

Humic Acid Stimulation of Growth and Optimization of Biochemical Profiles on Two Microalgal Species Proposed asLive Feeds in Aquaculture

机译:腐殖酸刺激两种微藻种生化谱的生长和优化,提出了水产养殖中的饲料

获取原文

摘要

Microalgae have an important role in aquaculture as a means of enriching zooplankton for on-feeding to fish and other larvae. In addition, microalgal provide energy which is transferred through the food chain to higher trophic levels via the zooplankton intermediates (Brown, 2002). Tney are characterized by high nutrient production of compounds such as proteins, lipids, carbohydrates (Renaud et al., 1999), sterols (Mohammady, 2004), polyunsaturated fatty acids (Sargent et al., 1997), and minerals (Fabregas and Herrero, 1986).The biochemical composition of microalgae can be manipulated readily by changing the growth conditions (Brown et al., 1997). Nutrient enrichment and optimization of these conditions is of practical use to aquaculturists who wantto optimize the level of specific nutrient(s) in the micraolgal that are needed by the fish. The enrichment of the microorganisms' nutrient medium by humic substances (HS) was studied (Muller-Wegener, 1988). This organic matter is commonly distributed in the natural habitats such as water, soil and sediments (Coates et al., 2002). It is easily available as compost (Canellas et al., 2002) for conducting to different crops (Mackowiak et al., 2001; Canellas et al., 2002) and has highly recognized benefitswhich are attributed to the numerous functional groups HS has(Coates et al., 2002). HS have been extensively studied for their possible contribution to phytoplankton growth as a source of nitrogen (Carlsson et al., 1995) and carbon (Doblin et al., 1999). Other studies (Doblin et al, 2000) attributed the benefits of humic substances to microalgae for the reason that they act as metal-bending ligands that modulate the availability of trace elements. Furthermore, a combination of metabolic (Doblin et al.,1999) and membrane permeability alterations (Vigneault et al., 2000) triggered by HS might also enhance algal growth.
机译:微藻在水产养殖中具有重要作用,作为富集浮游动物的手段,用于喂食鱼和其他幼虫。此外,微藻提供能量通过浮游动物中间体通过食物链转移到更高的营养水平(棕色,2002)。 They的特点是蛋白质,脂质,碳水化合物(Renaud等,1999),甾醇(Mohammady,2004),多不饱和脂肪酸(Sargent等,1997)和矿物质(Fabregas和Herrero 1986)。通过改变生长条件,可以容易地操纵微藻的生化组成(棕色等,1997)。这些条件的营养丰富和优化对于想要优化鱼类中需要的微型营养素水平的水产养殖者来说是实际用法的。研究了微生物的营养培养基(HS)的富集(Muller-Wegener,1988)。该有机物通常在水,土壤和沉积物等天然栖息地(Coate等,2002)中分布。它很容易作为堆肥(Canellas等,2002)进行不同作物(Mackowiak等,2001; Canellas等,2002)并具有高度认可的益处,归因于HS的众多官能团(母鸡)等等,2002)。 HS已经广泛研究了对植物生长的可能贡献,作为氮气的源(Carlsson等,1995)和碳(Doblin等,1999)。其他研究(Doblin等,2000)将腐殖质物质与微藻的益​​处归因于它们的原因是调节微量元素可用性的金属弯曲配体。此外,由HS触发的代谢(Doblin等,1999)和膜渗透性改变(VigneAult等,2000)的组合也可能增强藻类生长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号