首页> 外文会议>ASME international pipeline conference >FINITE ELEMENT MODELLING OF VOLUMETRIC AND SHEAR DUCTILE MICRO-AND MACRO- FRACTURE PROCESSES UNDER LONG TIME LOADING
【24h】

FINITE ELEMENT MODELLING OF VOLUMETRIC AND SHEAR DUCTILE MICRO-AND MACRO- FRACTURE PROCESSES UNDER LONG TIME LOADING

机译:长时间负荷下体积和剪切延性微观和宏观断裂过程的有限元建模

获取原文

摘要

Submarine and onshore pipelines transport enormous quantities of oil and gas vital to the economies of virtually all nations. Any failure to ensure safe and continuous operation of these pipelines can have serious economic implications, damage the environment and cause fatalities. A prerequisite to safe pipeline operation is to ensure their structural integrity to a high level of reliability throughout their operational lives. This integrity may be threatened by volumetric and shear ductile micro-and macro-fracture processes under long time loading or continuous operation. In this paper a mathematically consistent damage model for predicting the damage in pipeline structures under tensile and shear loading is considered. A detailed study of widely used damage models (e.g., Lemaitre's and Gurson's models) has been published in the literature. It has been shown that Gurson's damage model is not able to adequately predict fracture propagation path under shear loading, whereas Lemaitre's damage model (Lemaitre, 1985) shows good results in this case (e.g., Hambli 2001, Mkaddem et al. 2004). The opposite effect can be observed for some materials by using Gurson's damage model in the case of tensile loading (e.g., Tvergaard and Needleman 1984; Zhang et al. 2000; Chen and Lambert 2003; Mashayekhi et al. 2007) and wiping die bending process (Mkaddem et al. 2004). Therefore, the mathematically consistent damage model which takes into account the advantages of both Lemaitre's and Gurson's models has been developed. The model is based on the assumption that the damage state of materials can be described by a damage tensor ω_(ij). This allows for definition of two scalars that are ω = ω_(kk) /3 (the volume damage) (Lukyanov, 2004) and α = (ω'_(ij)ω_('ij))~(1/2) (a norm of the damage tensor deviator ω'_(ij) =ω_(ij)-ωδ_(ij)) (Lukyanov, 2004). The ω parameter describes the accumulation of micro-pore type damage (which may disappear under compression) and the parameter α describes the shear damage. The proposed damage model has been implemented into the finite element code ABAQUS by specifying the user material routine (UMAT). Based on experimental research which has been published by Lemaitre (1985), the proposed isotropic elastoplastic damage model is validated. The results for X-70 pipeline steel arc also presented, discussed and future studies are outlined.
机译:潜艇和陆上管道运输巨大的石油和天然气对几乎所有国家的经济体。任何未能确保这些管道的安全和持续运行都可以具有严重的经济影响,损害环境并导致死亡。安全管道运营的先决条件是在其运营生命中确保其结构完整性在高度可靠性。这种完整性可以在长时间加载或连续操作下通过体积和剪切延展性微型和宏观断裂过程受到威胁。在本文中,考虑了一种数学上一致的损伤模型,用于预测拉伸剪切载荷下管道结构损伤。对广泛使用的损坏模型进行了详细研究(例如,LEMAITRE和Gurson的模型)已在文献中发表。已经表明,Gurson的损伤模型无法充分预测剪切负载下的骨折传播路径,而Lemaitre的损坏模型(Lemaitre,1985)在这种情况下显示出良好的结果(例如,Hambli 2001,MKaddem等,2004)。通过在拉伸载荷的情况下使用Gurson的损伤模型可以观察到相反的效果(例如,Tvergaard和Tergleman 1984; Zhang等人,2000; Chen和Lambert 2003; Mashayekhi等,2007)和擦拭模具弯曲过程(Mkaddem等人。2004)。因此,已经开发了考虑到Lemaitre和Gurson模型的优势的数学上一致的损伤模型。该模型基于假设材料的损坏状态可以通过损坏τΩ_(IJ)来描述。这允许定义两个ω=ω_(kk)/ 3(体积损坏)(lukyanov,2004)和α=(ω'_(ij)ω_('ij))〜(1/2)(损坏张量偏差ω'_(ij)=ω_(ij)-ωδ_(ij))(lukyanov,2004)。 ω参数描述了微孔型损坏的累积(可能在压缩下消失),参数α描述了剪切损坏。通过指定用户材料例程(UMAT),已建议的损坏模型已实施到有限元代码ABAQUS中。基于由Lemaitre(1985)公布的实验研究,验证了所提出的各向同性弹性损伤模型。概述了X-70管道钢弧的结果,讨论了,讨论和未来的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号