首页> 外文会议>International Fuel Cell Science, Engineering Technology Conference >PART II OF II: DEPLOYMENT OF MERESS MODEL - DESIGNING, CONTROLLING, AND INSTALLING STATIONARY COMBINED HEAT AND POWER (CHP) FUEL CELL SYSTEMS (FCS) TO REDUCE COSTS AND GREENHOUSE GAS (GHG) EMISSIONS
【24h】

PART II OF II: DEPLOYMENT OF MERESS MODEL - DESIGNING, CONTROLLING, AND INSTALLING STATIONARY COMBINED HEAT AND POWER (CHP) FUEL CELL SYSTEMS (FCS) TO REDUCE COSTS AND GREENHOUSE GAS (GHG) EMISSIONS

机译:II的第二部分:公司部署 - 设计,控制和安装静止组合热量和功率(CHP)燃料电池系统(FCS),以降低成本和温室气体(GHG)排放

获取原文

摘要

The Maximizing Emission Reductions and Economic Savings Simulator (MERESS) is an optimization tool that allows users to evaluate avant-garde strategies for installing and operating combined heat and power (CHP) fuel cell systems (FCSs) in buildings. This article discusses the deployment of MERESS to show illustrative results for a California campus town, and, based on these results, makes recommendations for further installations of FCSs to reduce greenhouse gas (GHG) emissions. MERESS is used to evaluate one of the most challenging FCS types to use for GHG reductions, the Phosphoric Acid Fuel Cell (PAFC) system. These PAFC FCSs are tested against a base case of a CHP combined cycle gas turbine (CCGT). Model results show that three competing goals (GHG emission reductions, cost savings to building owners, and FCS manufacturer sales revenue) are best achieved with different strategies, but that all three goals can be met reasonably with a single approach. According to MERESS, relative to a base case of only a CHP CCGT providing heat and electricity with no FCSs, the town achieves the highest 1) GHG emission reductions, 2) cost savings to building owners, and 3) FCS manufacturer sales revenue each with three different operating strategies, under a scenario of full incentives and a USD100/tonne carbon dioxide (CO{sub}2) tax (Scenario D). The town achieves its maximum CO{sub}2 emission reduction, 37% relative to the base case, with operating Strategy V: stand alone operation (SA), no load following (NLF), and a fixed heat-to-power ratio (FHP) [SA, NLF, FHP] (Scenario E). The town's building owners gain the highest cost savings, 25%, with Strategy I: electrically and thermally networked (NW), electricity power load following (ELF), and a variable heat-to-power ratio (VHP) [NW, ELF, VHP] (Scenario D). FCS manufacturers generally have the highest sales revenue with Strategy III: NW, NLF, with a fixed heat-to-power ratio (FHP) [NW, NLF, FHP] (Scenarios B, C, and D). Strategies III and V are partly consistent with the way that FCS manufacturers design their systems today, primarily as NLF with a FHP. By contrast, Strategy I is avant-garde for the fuel cell industry, in particular, in its use of a VHP and thermal networking. Model results further demonstrate that FCS installations can be economical for building owners without any carbon tax or government incentives. Without any carbon tax or state and federal incentives (Scenario A), Strategy I is marginally economical, with 3% energy cost savings, but with a 29% reduction in CO{sub}2 emissions. Strategy I is the most economical strategy for building owners in all scenarios (Scenarios A, B, C, and D) and, at the same time, reasonably achieves other goals of large GHG emission reductions and high FCS manufacturer sales revenue. Although no particular building type stands out as consistently achieving the highest emission reductions and cost savings (Scenarios B-2 and E-2), certain building load curves are clear winners. For example, buildings with load curves similar to Stanford's Mudd Chemistry building (a wet laboratory) achieve maximal cost savings (1.5% with full federal and state incentives but no carbon tax) and maximal CO{sub}2 emission reductions (32%) (Scenarios B-2 and E-2). Finally, based on these results, this work makes recommendations for reducing GHG further through FCS deployment. (Part I of II articles discusses the motivation and key assumptions behind the MERESS model development (Colella 2008).)
机译:最大化的减排和经济节约模拟器(MERESS)是一种优化工具,它允许用户评估在建筑安装和运行的热电联产(CHP)的燃料电池系统(FCSS)前卫的策略。本文讨论MERESS的部署,以显示结果说明了加州大学城,并根据这些结果,使得对于FCSS的进一步安装,以减少温室气体(GHG)排放的建议。 MERESS用于评估最具挑战性的FCS类型之一用于温室气体减排的磷酸型燃料电池(PAFC)系统。这些PAFC FCSS是针对一个CHP联合循环燃气涡轮机(CCGT)的基的情况下进行测试。模型结果表明,三个竞争目标(减少温室气体排放,节约成本为业主和FCS制造商的销售收入),与不同的策略最好地实现,但所有这三个目标可以合理用单一的方式来满足。据MERESS,相对于只有一个CHP CCGT的基本情况提供热能和电能,无FCSS,全镇实现了最高1)减少温室气体排放,节约2)成本大厦业主,和3)FCS生产厂家销售每收入三种不同的操作策略,完全激励的场景和USD100 /吨二氧化碳(CO {子} 2)税(情景d)下。镇达到其最大CO {子} 2减排,相对于所述基座的情况下37%,以经营战略五:独立操作(SA),无负载下(NLF),和一个固定的热功率比( FHP)[SA,NLF,FHP](方案E)。镇的楼宇业主获得最高的成本节约,25%,与策略I:电和热联网(NW),电力负荷跟踪(ELF),和可变的热功率比(VHP)[NW,ELF, VHP](情景d)。 FCS制造商一般具有最高的销售收入与策略III:NW,NLF,具有固定的热功率比(FHP)[NW,NLF,FHP](方案B,C,和d)。策略III和V是与方式部分一致,即FCS制造商设计他们的系统今天,主要作为NLF与FHP。相比之下,战略我是前卫的燃料电池产业,特别是在其使用VHP和热联网。模型结果进一步证明,FCS的安装可以是经济建设的业主没有任何碳税或政府奖励。没有任何碳税或州和联邦激励(情形A),策略I是轻微经济的,与保留的3%的能源成本,但与在CO {子} 2排放量减少了29%。我的策略是在所有情况下(方案A,B,C,和d)业主和,同时最经济的策略,合理地实现了大温室气体减排和高FCS制造商销售收入的其他目标。虽然没有特别的建筑物类型引人注目,因为始终实现最高的减排和成本节约(方案B-2和E-2),某些建筑物负荷曲线是明显的赢家。例如,具有类似于斯坦福的马德化学建筑物负荷曲线(湿实验室)建筑物​​达到最大的成本节约(全文联邦和州奖励1.5%,但无碳税)和最大CO {子} 2个排放减少量(32%)(方案B-2和E-2)。最后,基于这些结果,这项工作提出建议,为减少温室气体进一步通过FCS部署。 (二文章中,我部分讨论的动机和背后的MERESS模式发展的关键假设(2008年Colella)。)

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号