首页> 外文期刊>Journal of Fuel Cell Science and Technology >Optimizing the Design and Deployment of Stationary Combined Heat and Power Fuel Cell Systems for Minimum Costs and Emissions - Part I: Model Design
【24h】

Optimizing the Design and Deployment of Stationary Combined Heat and Power Fuel Cell Systems for Minimum Costs and Emissions - Part I: Model Design

机译:优化固定式热电联产燃料电池系统的设计和部署,以实现最低的成本和排放-第一部分:模型设计

获取原文
获取原文并翻译 | 示例
           

摘要

Stationary combined heat and power (CHP) fuel cell systems (FCSs) can provide electricity and heat for buildings and can reduce greenhouse gas (GHG) emissions significantly if they are configured with an appropriate installation and operating strategy. The maximizing emission reduction and economic saving simulator (MERESS) is an optimization tool that was developed to evaluate novel strategies for installing and operating CHP FCSs in buildings. These novel strategies include networking, load following, and the use of variable heat-to-power ratios, all of which industry typically has not implemented. A primary goal of models like MERESS is to use relatively inexpensive simulation studies to identify more financially and environmentally effective ways to design and install FCSs. Models like MERESS can incorporate the pivotal choices that FCS manufacturers, building owners, emission regulators, competing generators, and policy makers make, and empower them to evaluate the effect of their choices directly. MERESS directly evaluates trade-offs among three key goals: GHG reductions, energy cost savings for building owners, and high sales revenue for FCS manufacturers. MERESS allows one to evaluate these design trade-offs and to identify the optimal control strategies and building load curves for installation based on either (1) maximum GHG emission reductions or (2) maximum cost savings to building owners. Part I discusses the motivation and key assumptions behind MERESS model development. Part II discusses run results from MERESS for a California town and makes recommendations for further FCS installments (Colella et al, 2011, "Optimizing the Design and Deployment of Stationary Combined Heat and Power Fuel Cell Systems for Minimum Costs and Emissions - Part II: Model Results," ASME J. Fuel Cell Sci. Technol., 8(2), p. 021002).
机译:如果固定式热电联产(CHP)燃料电池系统配置了适当的安装和操作策略,它们可以为建筑物提供电力和热量,并且可以显着减少温室气体(GHG)的排放。最大限度地减少排放和节省经济的模拟器(MERESS)是一种优化工具,旨在评估在建筑物中安装和操作CHP FCS的新颖策略。这些新颖的策略包括联网,负载跟踪以及使用可变的热/功率比,而工业界通常都没有实现这些策略。诸如MERESS之类的模型的主要目标是使用相对便宜的仿真研究来确定设计和安装FCS的更经济和环保的方式。像MERESS这样的模型可以融合FCS制造商,建筑物所有者,排放监管者,竞争的发电者和政策制定者做出的关键选择,并使他们能够直接评估其选择的效果。 MERESS直接评估了以下三个主要目标之间的权衡:减少温室气体,为业主节约能源成本以及为FCS制造商带来高销售收入。 MERESS可以评估这些设计折衷,并基于(1)最大温室气体排放量减少或(2)建筑物业主最大成本节省来确定最佳的安装安装控制策略和曲线。第一部分讨论了MERESS模型开发背后的动机和关键假设。第二部分讨论了MERESS在加利福尼亚州城镇的运行结果,并为进一步的FCS安装提出了建议(Colella等,2011,“优化固定式热电联产燃料电池系统的设计和部署,以实现最低成本和排放-第二部分:模型结果,” ASME J.Fuel Cell Sci.Technol。,8(2),第021002页)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号