首页> 外文会议>AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference >Fiber-Optics Based Pressure and Temperature Sensors for Harsh Environments
【24h】

Fiber-Optics Based Pressure and Temperature Sensors for Harsh Environments

机译:基于光纤和温度传感器的恶劣环境

获取原文

摘要

Monitoring accurate temperature and pressure profiles in harsh environments is currently in high demand for gas turbine engines and nuclear reactor simulators. The ability to measure both quantities continuously over a region, without thermal coupling, while maintaining a small design envelope is also highly desirable. High temperature electronic devices, such as MEMS (microelectromechanical systems), have provided industry with effective sensors. However, because they rely heavily on the silicon technology, their performance is limited to just above 500°C. Beyond this temperature, silicon's mechanical properties begin to break down. Researchers have shown MEMS sensors to be accurate at temperatures reaching 600°C, but higher temperature sustainability will require a more durable material selection. Beyond the material shortcoming, the high temperatures do not effectively allow MEMS sensors to be multiplexed into large arrays. In general, fiber-optic based methods have been shown to offer many advantages over electronic based sensors and are the ideal choice for high temperature regimes and distributed sensing. In this paper, a diaphragm based design is presented. The design includes, a 3.175 mm maximum outer radius coupled with the ability of distributed pressure and temperature sensing for temperatures reaching 800°C. Finite element analysis using ANSYS along with analytical verification models have been used for the design evolution. Early attempts involved a bellows based design, where low pressure testing yielded good results. However, complexity in the design's assembly motivatd us to pursue other design options. Further design progression led us to discover that a diaphragm based design would provide a simple fabrication method and good sensitivity. For this design to be realized at high temperatures, a robust bonding method must be discovered to avoid unwantd deformation due to thermal CTE mismatch.
机译:监测恶劣环境中的精确温度和压力型材目前对燃气涡轮发动机和核反应堆模拟器的需求很高。在没有热耦合的情况下,在没有热耦合的情况下连续测量两个量的能力也是非常理想的。高温电子设备,例如MEMS(微机电系统),提供了具有有效传感器的行业。然而,由于它们严重依赖于硅技术,因此它们的性能仅限于500°C以上。除此温度之外,硅的机械性能开始分解。研究人员已经显示了MEMS传感器在达到600°C的温度下准确,但温度可持续性较高需要更耐用的材料选择。除了材料缺点之外,高温不会有效地允许MEMS传感器复用成大阵列。通常,已经显示光纤基于光纤的方法,以提供对基于电子传感器的许多优点,并且是高温制度和分布式感测的理想选择。本文介绍了基于隔膜的设计。该设计包括3.175毫米的最大外半径,其具有分布式压力和温度感测的能力,温度达到800°C。使用ANSYS以及分析验证模型的有限元分析已被用于设计演化。早期尝试涉及基于波纹管的设计,低压测试产生了良好的结果。但是,在设计的大会上的复杂性Motivatd我们追求其他设计选项。进一步的设计进展使我们发现基于隔膜的设计将提供简单的制造方法和良好的灵敏度。对于在高温下实现的这种设计,必须发现一种稳健的粘接方法以避免由于热CTE不匹配引起的肆无忌惮变形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号