首页> 外文会议>International Technical Meeting of the Satellite Division of The Institute of Navigation >The Limits of In-Run Calibration of MEMS and the Effect of New Techniques
【24h】

The Limits of In-Run Calibration of MEMS and the Effect of New Techniques

机译:MEMS的运行校准的限制以及新技术的效果

获取原文

摘要

Inertial sensors can significantly increase the robustness of an integrated navigation system by bridging gaps in the coverage of other positioning technologies, such as GNSS or Wi-Fi positioning [1]. A full set of chip-scale MEMS accelerometers and gyros can now be bought for less than $10, potentially opening up a wide range of new applications. However, these sensors require calibration before they can be used for navigation[2]. Higher quality inertial sensors may be calibrated "inrun" using Kalman filter-based estimation as part of their integration with GNSS or other position-fixing techniques. However, this approach can fail when applied to sensors with larger errors which break the Kalman filter due to the linearity and small-angle approximations within its system model not being valid. Possible solutions include: replacing the Kalman filter with a non-linear estimation algorithm, a pre-calibration procedure and smart array [3]. But these all have costs in terms of user effort, equipment or processing load. This paper makes two key contributions to knowledge. Firstly, it determines the maximum tolerable sensor errors for any in-run calibration technique using a basic Kalman filter by developing clear criteria for filter failure and performing Monte-Carlo simulations for a range of different sensor specifications. Secondly, it assesses the extent to which pre-calibration and smart array techniques enable Kalman filter-based in-run calibration to be applied to lower-quality sensors. Armed with this knowledge of the Kalman filter's limits, the community can avoid both the unnecessary design complexity and computational power consumption caused by over-engineering the filter and the poor navigation performance that arises from an inadequate filter. By establishing realistic limits, one can determine whether real sensors are suitable for in-run calibration with simple characterization tests, rather than having to perform time-consuming empirical testing.
机译:惯性传感器可以由在其它定位技术,诸如全球导航卫星系统或Wi-Fi定位[1]的覆盖范围缩小间隙显著增加一个集成的导航系统的鲁棒性。现在可以购买一整套芯片级MEMS加速度计和陀螺仪不到10美元,可能打开各种新应用。但是,这些传感器在它们可用于导航之前需要校准[2]。使用基于Kalman滤波器的估计可以将更高质量的惯性传感器校准“inrun”作为与GNSS或其他定位技术集成的一部分。然而,当应用于具有更大误差的传感器时,这种方法可能会失败,由于其系统模型内的线性度和小角度近似,打破了卡尔曼滤波器的误差。可能的解决方案包括:用非线性估计算法替换卡尔曼滤波器,预校准过程和智能阵列[3]。但这些都在用户努力,设备或处理负荷方面具有成本。本文对知识进行了两个关键贡献。首先,它通过开发用于滤波器故障的清晰标准并对一系列不同的传感器规格进行Monte-Carlo模拟来确定使用基本Kalman滤波器的任何运行校准技术的最大可容许传感器错误。其次,它评估了预校准和智能阵列技术使基于Kalman滤波器的运行运行校准的程度适用于较低质量的传感器。通过这种知识的Kalman滤波器的限制,社区可以避免由过滤器过滤器和缺陷的过滤器引起的不必要的设计复杂性和计算功耗。通过建立现实限制,可以确定真实传感器是否适合于具有简单表征测试的运行校准,而不是必须执行耗时的经验测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号