首页> 外文会议>International Symposium on Zirconium in the Nuclear Industry >Damage Dependence of Irradiation Deformation of Zr-2.5Nb Pressure Tubes
【24h】

Damage Dependence of Irradiation Deformation of Zr-2.5Nb Pressure Tubes

机译:Zr-2.5NB压力管的照射变形损伤依赖性

获取原文

摘要

The diametral expansion and elongation rates of Zr-2.5Nb pressure tubes in CANDU™ (CANada Deuterium Uranium) nuclear reactors are important properties that limit their useful life and the maximum power level for reactor operation. For a given set of operating conditions there is considerable variability in the deformation rates because of the variations in as-fabricated microstructure and chemistry from tube-to-tube - specifically grain size, crystallographic texture, and oxygen content. The as-fabricated microstructure also varies within a given tube, the largest variation occurring along the length, and this is a result of cooling of the tube during the extrusion process. During service in a nuclear reactor, the microstructure evolves further, and this additional change in microstructure is primarily dependent on the rate of radiation damage (determined by the fast neutron flux), the temperature, and the time. Both the fast neutron flux and temperature vary at all points within the pressure tube. For a given material microstructure, the deformation is a function of the operating conditions: coolant pressure (stress), temperature, and neutron flux. In principle, the deformation rate is a linear function of fast neutron flux, and this is mostly true for fast neutron fluxes of the order of 10~(17) n.m~(-2).s~(-1). Recent analyses of data from pressure tubes measured over long periods of operation in reactor have shown that the steady-state diametral creep rates are not linear with fast neutron flux for fluxes up to about 0.5 x 10~(17) n.m~(-2).s~(-1). A qualitative model has been developed to account for the observed behavior based on the modifying effects of neutron flux and temperature on the microstructure. The model describes the suppression of thermal creep and the transition from thermal to irradiation creep with increasing neutron flux.
机译:CANDU™(加拿大氘铀)核反应堆中ZR-2.5NB压力管的径向膨胀和伸长率是限制反应器操作的有用生命和最大功率水平的重要特性。对于给定的一组操作条件,变形速率具有相当大的变化,因为由管 - 管的制造微观结构和化学的变化 - 特别是晶粒尺寸,晶体纹理和氧含量的变化。由制造的微结构在给定管内变化,沿着长度发生的最大变化,这是在挤出过程中冷却管的结果。在核反应堆中的服务期间,微观结构进一步发展,并且这种微观结构的额外变化主要取决于辐射损伤(由快节奏磁通量决定),温度和时间。快节奏通量和温度都在压力管内的所有点处变化。对于给定的材料微观结构,变形是操作条件的函数:冷却剂压力(应力),温度和中子通量。原则上,变形速率是快节中子通量的线性函数,这主要是真实的,对于10〜(17)n.m〜(-2)的快速中子丝量.S〜(-1)。最近从反应器中长时间测量的压力管的数据分析已经表明,稳态直径蠕变速率与快节中子通量的稳定径向蠕变速率不到约0.5×10〜(17)nm〜(-2) .s〜(-1)。已经开发了一种定性模型,以根据中子通量和温度对微结构的改变效果来解释观察到的行为。该模型描述了随着中子通量增加的抑制热蠕变和从热量到照射蠕变的转变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号