首页> 外文会议>International Conference on Probabilistic Safety Assessment and Management >SPACE PROPULSION SYSTEM PHASED-MISSION PROBABILITY ANALYSIS USING CONVENTIONAL PRA METHODS
【24h】

SPACE PROPULSION SYSTEM PHASED-MISSION PROBABILITY ANALYSIS USING CONVENTIONAL PRA METHODS

机译:空间推进系统使用常规PRA方法分阶段执行概率分析

获取原文

摘要

As part of a series of papers on the topic of advance probabilistic methods, a benchmark phased-mission problem has been suggested. This problem consists of modeling a space mission using an ion propulsion system, where the mission consists of seven mission phases. The mission requires that the propulsion operate for several phases, where the configuration changes as a function of phase. The ion propulsion system itself consists of five thruster assemblies and a single propellant supply, where each thruster assembly has one propulsion power unit and two ion engines. In this paper, we evaluate the probability of mission failure using the conventional methodology of event tree/fault tree analysis. The event tree and fault trees are developed and analyzed using Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE). While the benchmark problem is nominally a "dynamic" problem, in our analysis the mission phases are modeled in a single event tree to show the progression from one phase to the next. The propulsion system is modeled in fault trees to account for the operation; or in this case, the failure of the system. Specifically, the propulsion system is decomposed into each of the five thruster assemblies and fed into the appropriate N-out-of-M gate to evaluate mission failure. A separate fault tree for the propulsion system is developed to account for the different success criteria of each mission phase. Common-cause failure modeling is treated using traditional (i.e., parametrically) methods. As part of this paper, we discuss the overall results in addition to the positive and negative aspects of modeling dynamic situations with non-dynamic modeling techniques. One insight from the use of this conventional method for analyzing the benchmark problem is that it requires significant manual manipulation to the fault trees and how they are linked into the event tree. The conventional method also requires editing the resultant cut sets to obtain the correct results. While conventional methods may be used to evaluate a dynamic system like that in the benchmark, the level of effort required may preclude its use on real-world problems.
机译:作为关于提前概率方法主题的一系列论文的一部分,已经提出了基准相控使命问题。这个问题包括使用离子推进系统建模空间使命,使命由七个任务阶段组成。任务要求推进器运行的几个阶段,其中配置随阶段的函数而变化。离子推进系统本身由五个推进器组件和单个推进剂供应组成,其中每个推进器组件具有一个推进动力单元和两个离子发动机。在本文中,我们使用事件树/故障树分析的传统方法评估任务失败的可能性。使用Systems分析程序开发并分析事件树和故障树,以便进行实际的综合可靠性评估(Saphire)。虽然基准问题是名义上是一个“动态”问题,但在我们的分析中,任务阶段以单个事件树建模,以显示从一个阶段到下一个阶段的进展。推进系统在故障树中建模以考虑操作;或者在这种情况下,系统的失败。具体地,推进系统被分解成五种推进器组件中的每一个,并进入适当的N-OUT-IN-M门以评估任务失败。开发出推进系统的单独故障树是为了考虑每个任务阶段的不同成功标准。使用传统(即参数)方法对常用故障建模进行处理。作为本文的一部分,除了用非动态建模技术建模动态情况的正面和负面方面,还讨论了整体结果。使用这种传统方法来分析基准问题的一个洞察力是它需要对故障树的重大手动操作以及它们如何链接到事件树中。传统方法还需要编辑所得切割集以获得正确的结果。虽然传统方法可用于评估像基准中的动态系统,但是所需的努力水平可能会阻止其对现实问题的使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号