首页> 外文会议>International Conference on Fracture >A LIFETIME PREDICTION MODEL FOR SINGLE CRYSTAL SUPERALLOYS SUBJECTED TO THERMOMECHANICAL CREEP-FATIGUE-OXIDATION DAMAGE
【24h】

A LIFETIME PREDICTION MODEL FOR SINGLE CRYSTAL SUPERALLOYS SUBJECTED TO THERMOMECHANICAL CREEP-FATIGUE-OXIDATION DAMAGE

机译:一种经受热机械蠕变抗氧化损伤的单晶高温合金的寿命预测模型

获取原文

摘要

This paper contains a brief description of a lifetime prediction model for Single Crystal Superalloys operated at high temperatures and subjected to creep, fatigue and oxidation damage mechanisms. The model aims at predicting engineering life to crack initiation and describing dominating damage mechanisms and their non-linear interaction in such materials. Microcracks propagation from initial casting pores is considered as the critical life-limiting factor. The initial damage, before any type of loading, is therefore quantified with the help of pores' statistical distribution. Microcracks propagation is described through creep-fatigue interaction under globally elastic or plastic material behaviors. Interaction of surface oxidation with creep-fatigue damage is described as drop of material strength within and beyond the oxidized zone. Different model parameters are obtained directly from materials tensile, creep and LCF test data at different temperatures. Some parameters, independent of temperature, are fitted on a large variety of LCF test data. Another set of LCF and TMF test data has been used to compare model predictions with. As a validation test of model prediction capabilities, lifetime of numerous LCF and TMF tests with various cycle shapes and on different material orientations has been calculated to a significant level of accuracy. Another validation test reported in here is the surface crack growth measured on the specimens and predicted accurately through this model.
机译:本文包含在高温下操作的单晶高温合金的寿命预测模型,并进行蠕变,疲劳和氧化机制。该模型旨在预测工程寿命,以破裂启动并描述这些材料中的主导损伤机制及其非线性相互作用。从初始铸造孔的微裂纹传播被认为是关键的寿命限制因子。因此,在任何类型的装载之前,在孔隙统计分布的帮助下量化了初始损害。通过全球弹性或塑料材料行为下的蠕变 - 疲劳相互作用描述微裂纹繁殖。表面氧化与蠕变疲劳损伤的相互作用被描述为氧化区内的材料强度下降。在不同温度下直接从材料拉伸,蠕变和LCF测试数据直接获得不同的模型参数。一些与温度无关的参数都安装在各种LCF测试数据上。另一组LCF和TMF测试数据已被用于与模型预测进行比较。作为模型预测能力的验证测试,已经计算出具有各种循环形状和不同材料方向的许多LCF和TMF测试的寿命。已经计算到显着的精度。这里报道的另一种验证测试是在样本上测量的表面裂纹生长,并通过该模型精确预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号