首页> 外文会议>International Conference on Fracture >IN-SITU NANOINDENTATION: A NOVEL TECHNIQUE FOR UNDERSTANDING NANOSCALE DEFORMATION MECHANISMS
【24h】

IN-SITU NANOINDENTATION: A NOVEL TECHNIQUE FOR UNDERSTANDING NANOSCALE DEFORMATION MECHANISMS

机译:原位纳米内膜:一种了解纳米级变形机制的新技术

获取原文

摘要

Nanoindentation is widely accepted as the preferred technique to study localized mechanical deformation phenomena in materials. However, the mechanisms of deformation can only be inferred from the load-displacement data obtained during a typical instrumented nanoindentation test. In order to elucidate the underlying physics of these process, we have developed and exploited a new technique, that of in-situ nanoindentation in a transmission electron microscope (TEM). In this technique, a voltage-actuated piezoceramic tube is used to position a sharp diamond in plane with the edge of an electron transparent sample. The tip is driven into the material in order to induce deformation and the corresponding deformation is observed in real time and at high spatial resolution. In this paper we will review the details of our experimental technique, as well as summarize our results from selected materials systems. In particular, we have studied thin films of aluminum deposited on top of microfabricated wedges of silicon, allowing us to observe such effects as initial deformation modes, size effects on hardening, grain boundary motion and dislocation nucleation, as well as the effects of solute additions on both dislocation propagation and grain boundary movement. Additionally, experiments on harder materials have permitted the observation of unexpected deformation modes. In the case of single crystal silicon, we have found a size-dependent transition from pressure-induced phase transformation to room temperature deformation by dislocation nucleation and propagation.
机译:纳米indentation广泛被认为是研究材料中局部机械变形现象的优选技术。然而,只能从典型的仪表纳米狭窄测试期间获得的负载 - 位移数据推断出变形机制。为了阐明这些过程的潜在物理,我们已经开发并开发了一种新的技术,即透射电子显微镜(TEM)中的原位纳米indentation。在该技术中,使用电压驱动的压电陶瓷管用于将尖锐的金刚石与电子透明样品的边缘定位。尖端被驱动到材料中以诱导变形,并且在高空间分辨率下观察相应的变形。在本文中,我们将审查我们的实验技术的细节,以及总结我们的选定材料系统的结果。特别是,我们已经研究了沉积在硅的微制订楔上的铝的薄膜,使我们观察初始变形模式的效果,尺寸对硬化,晶界运动和位移成核的影响,以及溶质添加的影响脱位传播与晶界运动。另外,较难的材料的实验允许观察意外变形模式。在单晶硅的情况下,我们已经发现通过位移成核和传播的压力诱导的相变与室温变形的尺寸依赖性转变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号