首页> 外文会议>International Conference on Fracture >History Effect in Fatigue under Variable Amplitude Loading Conditions in a 316L stainless Steel
【24h】

History Effect in Fatigue under Variable Amplitude Loading Conditions in a 316L stainless Steel

机译:316L不锈钢中可变幅度负载条件下疲劳的历史效应

获取原文

摘要

The context of this study is the prediction of fatigue crack growth in a rotor of a nuclear power plant. In these components, cracks are subjected to varying loads depending on the needs of delivering power. According to the operation phase, the cracks are subjected to mode I or mixed-mode dominated fatigue cycles. The studied material is a 316L stainless steel. This material displays a very significant cyclic hardening effect, which is expected to contribute to history effects in fatigue crack growth. As a matter of fact, cyclic plastic deformation within the crack tip region introduces internal stresses that modify the subsequent behaviour of the crack and are at the origin of spectacular history effects in fatigue. Consequently a model was developed for mode I fatigue crack growth under variable amplitude loading conditions that accounts for the kinematics hardening of the material. This model needs to be enriched so as to account for the isotropic hardening displayed by the 316L stainless steel. The model is set up using FE computations, but once identified it allows avoiding systematic and expensive FE computations so as to be easily used in an engineering context. First of all, the model is based on a multiscale approach. The idea is to partition the velocity field in the crack tip region into elastic,and plastic parts. Each part is the product of a reference spatial field and of an intensity factor which evolution allows monitoring the behaviour of the crack tip region at the global scale. The respective intensity factors are K_I, the Mode I pseudo-elastic intensity factor, and p1, the Mode I plastic intensity factor. FE computations allows generating evolutions of K1 versus p1, which are used to identify a global cyclic-elastic-plastic constitutive model for the crack tip region, i.e. a set of equations that allows predicting dp_I/dt. Its incremental formulation avoids using a cycle counting method. The first part of this paper is dedicated to present the experiments performed to characterize the fatigue behaviour of the stainless steel under variable amplitude loading. The second part is dedicated to the identification of the model for this material and to its evolutions to account for the specific features of the cyclic behaviour of the 361L.
机译:该研究的背景是预测核电站转子的疲劳裂纹生长。在这些组件中,根据提供电力的需要,裂缝经受变化的负载。根据操作阶段,对裂缝进行裂缝或混合模式占主导地疲劳循环。研究的材料是316L不锈钢。该材料显示出非常显着的循环硬化效果,预计将有助于疲劳裂纹生长的历史影响。事实上,裂纹尖端区域内的循环塑性变形引入了改变裂缝后续行为的内应力,并且处于疲劳中壮观历史效果的起源。因此,在可变幅度负载条件下开发了一种模型,用于在可变幅度负载条件下考虑材料的运动学硬化的变化条件。该模型需要富集以便考虑316L不锈钢显示的各向同性硬化。使用FE计算建立该模型,但是一旦识别它允许避免系统和昂贵的FE计算,以便在工程背景中容易地使用。首先,该模型基于多尺度方法。该思想是将裂缝尖端区域的速度场分配成弹性,塑料部件。每个部分是参考空间场的乘积和强度因子,其演进允许在全球范围内监测裂缝尖端区域的行为。相应的强度因子是K_I,模式I伪弹性强度因子和P1,模式I塑料强度因子。 FE计算允许生成K1与P1的演变,其用于识别裂缝尖端区域的全局循环弹性塑性本构模型,即允许预测DP_I / DT的一组方程。其增量配方避免使用循环计数方法。本文的第一部分专用于呈现进行的实验,以表征在可变振幅负载下不锈钢的疲劳行为。第二部分专用于识别该材料的模型以及其演变,以考虑361L的循环行为的特定特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号