首页> 外文会议>International Conference on Fracture >Atomic Mechanisms of Structural Reconstruction of FCC Metallic Nanowires in the Process of Tension Deformation
【24h】

Atomic Mechanisms of Structural Reconstruction of FCC Metallic Nanowires in the Process of Tension Deformation

机译:张力变形过程中FCC金属纳米线结构重建的原子机制

获取原文

摘要

In recent years there has been growing interest in the study of materials whose physical and mechanical properties are formed at nanometer scale and even at the scale of molecules and atoms. Such materials are called nanostructures or nanomaterials. It is accepted by many researchers that structural units of nanomaterials have characteristic size of less than 100 nm but sometimes this limit is extended up to 400 nm. Experimental study of structural changes taking place in nanomaterials under intensive external impacts and severe plastic deformation is a challenge. Atomistic computer simulations can be effectively used in parallel with theory and real experiment when deformation of nanomaterials takes place at a very high strain rate. The main computational methods used in simulations at microscale and nanoscale levels are the molecular dynamics (MD), quasistatic relaxation, and Monte-Carlo methods. These methods find many applications in the study of the peculiarities of deformation and fracture processes in nanomaterials. In particular, the processes of structural reconstruction of an ideal nanocrystal of solid Ar under homogeneous strain condition have been studied in details by the method of quasistatic relaxation in quasi three-dimensional approximation. Mechanical properties and mechanisms of plastic deformations of nanowires have been extensively studied in the recent past.
机译:近年来,对物理和机械性能在纳米级形成的材料和甚至处于分子和原子的规模中,甚至存在兴趣。这些材料称为纳米结构或纳米材料。许多研究人员接受,纳米材料的结构单元具有小于100nm的特征,但有时该限制延伸至400nm。在密集的外部冲击下纳米材料发生结构变化的实验研究,严重的塑性变形是挑战。当纳米材料的变形以非常高的应变速率发生时,可以与理论和实验平行地有效地使用原子的计算机模拟。微观和纳米级水平模拟中使用的主要计算方法是分子动力学(MD),Quasistatic Sautsation和Monte-Carlo方法。这些方法在纳米材料的变形和断裂过程的研究中找到了许多应用。特别地,通过准立体近似的Quasistatic弛豫方法研究了在均匀菌株条件下的理想纳米晶体的结构重建的过程。最近的过去研究了纳米线的塑性变形的力学性能和机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号