首页> 外文会议>International Conference on Advances in Natural Computation >A New Smooth Support Vector Regression Based on ε-Insensitive Logistic Loss Function
【24h】

A New Smooth Support Vector Regression Based on ε-Insensitive Logistic Loss Function

机译:一种基于ε - 不敏感物流损失函数的新的光滑支持向量回归

获取原文

摘要

A new smooth support vector regression based on ε-insensitive logistic loss function, shortly Lε-SSVR, was proposed in this paper, which is similar to SSVR, but without adding any heuristic smoothing parameters and with robust absolute loss. Taking advantage of Lε-SSVR, one can now consider SVM as linear programming, and efficiently solve large-scale regression problems without any optimization packages. Details of this algorithm and its implementation were presented in this paper. Simulation results for both artificial and real data show remarkable improvement of generalization performance and training time.
机译:本文提出了一种基于ε - 不敏感物流损失函数的新的光滑支持向量回归,即Lε-SSVR,类似于SSVR,但不添加任何启发式平滑参数并具有鲁棒绝对损失。利用Lε-SSVR,人们现在可以将SVM视为线性编程,有效地解决了没有任何优化包的大规模回归问题。本文提出了该算法的细节及其实现。人为和实际数据的仿真结果表明概括的泛化性能和培训时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号