首页> 外文会议>International Astronautical Congress >IAC-15-A3.IP.7 A NOVEL TRAJECTORY OPTIMIZATION METHOD FOR MARS ATMOSPHERIC ENTRY
【24h】

IAC-15-A3.IP.7 A NOVEL TRAJECTORY OPTIMIZATION METHOD FOR MARS ATMOSPHERIC ENTRY

机译:IAC-15-A3.IP.7 MARS大气入口的新型轨迹优化方法

获取原文

摘要

Trajectory optimization for Mars atmospheric entry is an important prerequisite for the implementation of autonomous guidance and navigation. A well designed entry trajectory can preplan the entry scenario meeting multiple constraints, which increases the safety and accuracy of a landing mission. Meanwhile, in order to release the burden of the guidance and control system in descent and landing phases for a pinpoint landing, a fixed parachute deployment condition may be preferred. In this paper, a novel trajectory optimization method for Mars entry phase is proposed, and the feasibility of using genetic method to solve the trajectory optimization problem is demonstrated. In order to improve the navigation capability, a Mars entry navigation scenario using radiometric measurements from multiple ground beacons is considered, and the determination of Fisher information matrix is used to quantify the degree of observability. The integration of determination of Fisher information matrix reflecting the overall navigation performance during the entry phase is chosen as the performance index which should be maximized. For reaching a precise parachute deployment condition, a backward integration is used to eliminate the strong terminal constraints. Meanwhile, a series of discrete collocation points are selected based on the value of dynamic pressure which indicates the control capability. The continuous bank angle acceleration, which is regarded as control variable, can thus be approximated by the bank angle accelerations at these collocation points using a cubic interpolation method. Given certain parachute deployment conditions, the trajectory of entry vehicle can be calculated based on Runge-Kutta backward integration. Therefore, the degree of observability of Mars entry navigation respect to the entry trajectory is derived based on the bank angle accelerations at collocation points. The optimal control problem can thus be transformed to a nonlinear parameter optimization problem. With the consideration of path constraints of heat rate, dynamic pressure, and line-of-sight visibility of beacons, together with the terminal constraint of entry velocity, the trajectory optimization problem can be solved by a genetic algorithm. Above all, the control set corresponding to the parachute deployment condition is determined and analyzed based on the backward integration. Furthermore, trajectory optimization results of a Mars entry navigation scenario using three ground beacons demonstrate that the proposed trajectory optimization is more efficient than Gauss pseudospectral method using the same number of nodes and similar simulation time.
机译:MARS大气条目的轨迹优化是实施自主指导和导航的重要前提。精心设计的进入轨迹可以预先预先满足多个约束的进入场景,这增加了着陆代表团的安全性和准确性。同时,为了释放指导和控制系统的下降和降落阶段的指导和控制系统的负担,可以优选固定的降落伞展开条件。本文提出了一种新的轨迹优化方法,展示了使用基因方法解决轨迹优化问题的可行性。为了提高导航能力,考虑使用来自多个地基信标的辐射测量的火星条目导航场景,并且使用Fisher信息矩阵的确定来量化可观察性程度。选择在入口阶段期间反映整体导航性能的Fisher信息矩阵的集成作为应最大化的性能指数。为了达到精确的降落伞部署条件,向后集成用于消除强终端约束。同时,基于动态压力的值选择一系列离散的搭配点,这表明控制能力。因此,被视为控制变量的连续银行角度加速度可以通过使用立方插值方法在这些Collocation点处的银行角度加速来近似。鉴于某些降落伞部署条件,可以基于Runge-Kutta向后集成计算入口车辆的轨迹。因此,基于Collocation点处的银行角度加速来导出火星进入导航的可观察性的程度。因此,可以将最佳控制问题转换为非线性参数优化问题。考虑到热速率,动力压力和信仰的视线可视性的路径约束以及进入速度的终端约束,轨迹优化问题可以通过遗传算法来解决。最重要的是,基于向后集成确定和分析对应于降落伞部署条件的控制集。此外,使用三个地标的火星入口导航场景的轨迹优化结果表明,所提出的轨迹优化比使用相同数量的节点和类似的模拟时间更有效地比高斯伪谱法更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号