首页> 外文会议>Annual ACM-SIAM Symposium on Discrete Algorithms >Tight conditional lower bounds for counting perfect matchings on graphs of bounded treewidth, cliquewidth, and genus
【24h】

Tight conditional lower bounds for counting perfect matchings on graphs of bounded treewidth, cliquewidth, and genus

机译:用于计算有界树木宽,Cliquewdth和Genus图表的完美匹配的紧密条件下限

获取原文

摘要

By now, we have a good understanding of how NP-hard problems become easier on graphs of bounded treewidth and bounded cliquewidth: for various problems, matching upper bounds and conditional lower bounds describe exactly how the running time has to depend on treewidth or cliquewidth. In particular, Fomin et al. (2009, 2010) have shown a significant difference between these two parameters: assuming the Exponential-Time Hypothesis (ETH), the optimal algorithms for problems such as MAX CUT and EDGE DOMINATING SET have running time 2~(O(t))n~(O(1)) when parameterized by treewidth, but nO(t) when parameterized by cliquewidth. In this paper, we show that a similar phenomenon occurs also for counting problems. Specifically, we prove that, assuming the counting version of the Strong Exponential-Time Hypothesis (#SETH), the problem of counting perfect matchings (1) has no (2 -ε)~kn~(O(1)) time algorithm for any ε > 0 on graphs of treewidth k (but it is known to be solvable in time 2~kn~(O(1)) if a tree decomposition of width k is given), and (2) has no O(n~((1 - ε)k)) time algorithm for any ε > 0 on graphs of cliquewidth k (but it can be solved in time O(n~(k+1)) if a k-expression is given). A celebrated result of Fisher, Kasteleyn, and Temperley from the 1960s shows that counting perfect matchings in planar graphs is polynomial-time solvable. This was later extended by Gallucio and Loebl (1999), Tesler (2000) and Regge and Zechina (2000) who gave 4~k ·n~(O(1)) time algorithms for graphs of genus k. We show that the dependence on the genus k has to be exponential: assuming #ETH, the counting version of ETH, there is no 2~(o(k)) · n~(O(1)) time algorithm for the problem on graphs of genus k.
机译:到目前为止,我们很好地了解有界树木宽和有界洲的图表更容易的NP - 难题如何变得更容易:对于各种问题,匹配的上限和条件下限描述了运行时间如何依赖于树宽或瓷器。特别是Fomin等人。 (2009,2010)在这两个参数之间显示出显着差异:假设指数级假设(Eth),最大剪切和边缘主导集等问题的最佳算法具有运行时间2〜(o(t))n 〜(o(1))当由树木宽度参数化时,但是在瓷器中参数化时否(t)。在本文中,我们表明,对于计数问题,也会发生类似的现象。具体而言,我们证明,假设强大指数时假设的计数版本(#seth),计算完美匹配(1)的问题没有(2-ε)〜Kn〜(O(1))时间算法任何ΕWidthk的图表中的任何ε>(但是,如果给出宽度k的树木分解,则在时间2〜Kn〜(O(1))中可以溶解),并且(2)没有O(n〜 ((1 - ε)k))Cliquewidth K的图表上的任何ε> 0的时间算法(但如果给出了K表达),则可以在时间o(n〜(k + 1))中溶解)。 20世纪60年代的Fisher,Kasteleyn和Imperley的庆祝结果表明,在平面图中计算完美匹配是多项式溶液。这是纳布卢西奥和Loebio(1999),Tesler(2000)和Regge和Zechina(2000)延伸的那样,给出了4〜K·N〜(O(1))的时间算法。我们表明,对K属的依赖必须是指数的:假设#eth,eth的计数版本,没有2〜(o(k))·n〜(o(1))时间算法K的图表。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号