首页> 外文会议>Conference on multiphoton microscopy in the biomedical sciences >Enabling high-precision nonlinear three-dimensional photoprocessing of premeditated designs on a conventional multiphoton imaging system
【24h】

Enabling high-precision nonlinear three-dimensional photoprocessing of premeditated designs on a conventional multiphoton imaging system

机译:在传统的多光子成像系统上实现高精度非线性三维光处理预混设计

获取原文

摘要

There is an increasing amount of interest in functionalized microstructural, microphotonic and microelectromechanical systems (MEMS) for use in biological applications. By scanning a tightly focused ultra-short pulsed laser beam inside a wide variety of commercially available polymer systems, the flexibility of the multiphoton microscope can be extended to include routine manufacturing of micro-devices with feature sizes well below the diffraction limit. Compared with lithography, two-photon polymerization has the unique ability to additively realize designs with high resolution in three dimensions; this permits the construction of cross-linked components and structures with hollow cavities. In light of the increasing availability of multiphoton imaging systems at research facilities, femtosecond laser manufacturing becomes particularly attractive in that the modality provides a readily accessible, rapid and high-accuracy 3-D processing capability to biological investigators interested in culture scaffolds and biomimetic tissue engineering, bio-MEMS, biomicrophotonics and microfluidics applications. This manuscript overviews recent efforts towards to enabling user accessible 3-D micro-manufacturing capabilities on a conventional proprietary-based imaging system. Software which permits the off-line design of microstructures and leverages the extensibility of proprietary LCSM image acquisition software to realize designs is introduced. The requirements for multiphoton photo-disruption (ablation) are in some ways analogous to those for multiphoton polymerization. Hence, "beam-steering" also facilitates precision photo-disruption of biological tissues with 3-D resolution, and applications involving tissue microdissection and intracellular microsurgery or three-dimensionally resolved fluorescence recovery after photobleaching (FRAP) studies can benefit from this work as well.
机译:在功能化的微观结构,微电泳和微机电系统(MEMS)中有越来越多的兴趣,用于生物应用。通过在各种市售的高分子系统内扫描紧密聚焦的超短脉冲激光束,可以扩展多光显微镜的柔韧性,以包括具有特征尺寸远低于衍射极限的微型器件的常规制造。与光刻相比,双光子聚合具有独特的能力,可以在三维中加剧地实现高分辨率的设计;这允许构建带中空腔的交联部件和结构。鉴于在研究设施中的多光子成像系统的可用性增加,飞秒激光制造变得特别有吸引力,因为这种方式提供了对对文化支架和仿生组织工程感兴趣的生物研究员的易于访问,快速,高精度的3-D处理能力,生物MEMS,生物学药物和微流体应用。此手稿概述了最近努力在传统的基于专有的成像系统上实现用户可访问的3-D微型制造能力。介绍了允许微观结构的离线设计的软件,并利用专有LCSM图像采集软件实现设计的可扩展性。多光子照片中断(消融)的要求是一种类似于多选聚合的方式。因此,“光束转向”还促进了具有3-D分辨率的生物组织的精确光破坏,并且在光漂白(FRAP)研究中涉及组织微粉和细胞内显微外科或三维分辨的荧光恢复的应用可以从这项工作中受益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号