首页> 外文会议>Topical Conference on Radio Frequency Power in Plasmas >A Fresh Look at Electron Cyclotron Current Drive Power Requirements for Stabilization of Tearing Modes in ITER
【24h】

A Fresh Look at Electron Cyclotron Current Drive Power Requirements for Stabilization of Tearing Modes in ITER

机译:新鲜看电子回旋电流驱动电源要求,以稳定撕裂模式

获取原文

摘要

ITER is an international project to design and build an experimental fusion reactor based on the "tokamak" concept. ITER relies upon localized electron cyclotron current drive (ECCD) at the rational safety factor q=2 to suppress or stabilize the expected poloidal mode m=2, toroidal mode n=1 neoclassical tearing mode (NTM) islands. Such islands if unmitigated degrade energy confinement, lock to the resistive wall (stop rotating), cause loss of "H-mode" and induce disruption. The International Tokamak Physics Activity (ITPA) on MHD, Disruptions and Magnetic Control joint experiment group MDC-8 on Current Drive Prevention/Stabilization of Neoclassical Tearing Modes started in 2005, after which assessments were made for the requirements for ECCD needed in ITER, particularly that of rf power and alignment on q=2 [1]. Narrow well-aligned rf current parallel to and of order of one percent of the total plasma current is needed to replace the "missing" current in the island O-points and heal or preempt (avoid destabilization by applying ECCD on q=2 in absence of the mode) the island [2-4]. This paper updates the advances in ECCD stabilization on NTMs learned in DIII-D experiments and modeling during the last 5 to 10 years as applies to stabilization by localized ECCD of tearing modes in ITER. This includes the ECCD (inside the q=1 radius) stabilization of the NTM "seeding" instability known as sawteeth (m/n=1/1) [5]. Recent measurements in DIII-D show that the ITER-similar current profile is classically unstable, curvature stabilization must not be neglected, and the small island width stabilization effect from helical ion polarization currents is stronger than was previously thought [6]. The consequences of updated assumptions in ITER modeling of the minimum well-aligned ECCD power needed are all-in-all favorable (and well-within the ITER 24 gyrotron capability) when all effects are included. However, a "wild card" may be broadening of the localized ECCD by the presence of the island; various theories predict broadening could occur and there is experimental evidence for broadening in DIII-D. Wider than now expected ECCD in ITER would make alignment easier to do but weaken the stabilization and thus require more rf power. In addition to updated modeling for ITER, advances in the ITER-relevant DIII-D ECCD gyrotron launch mirror control system hardware and real-time plasma control system have been made [7] and there are plans for application in DIII-D ITER demonstration discharges.
机译:ITER是一个设计和构建基于“Tokamak”概念的实验融合反应堆的国际项目。迭代依赖于理性安全系数Q = 2的局部电子回旋电流驱动器(ECCD)抑制或稳定预期的单极模式M = 2,环形模式n = 1个新古典撕裂模式(NTM)岛。这种岛屿如果未发生解脱能量限制,锁定到电阻壁(停止旋转),导致“H模式”损失并引起破坏。国际托卡马克物理活动(ITPA)关于MHD,中断和磁控联合实验组MDC-8关于目前驱动器预防/稳定的新古典撕裂模式,在2005年开始,为艾尔需要的ECCD的要求进行评估,特别是rf功率和q = 2 [1]的对齐的。狭窄的对齐的RF电流平行于总等离子体电流的百分之一度的尺寸,以取代岛屿O点中的“缺失”电流,并愈合或抢占(通过在缺失时通过在Q = 2上施加ECCD来抵抗稳定性模式)岛[2-4]。本文更新了在DIII-D实验中获悉的ECCD稳定的进步,并在过去5到10年期间建模,因为撕裂模式的局部ECCD适用于抗撕裂模式的稳定。这包括ECCD(Q = 1半径)稳定的NTM“播种”不稳定性,称为SAWTETH(M / N = 1/1)[5]。近期测量在DIII-D中表明迭代相似的电流曲线是经典的不稳定,不得忽略曲率稳定,并且螺旋离子极化电流的小岛宽度稳定效果比先前认为更强烈[6]。当包括所有效果时,所需的最小良好对齐的ECCD功率的更新假设中更新的假设的后果在所需的最小良好对齐的ECCD电源中是全部有利的(并且在迭代24陀螺功能内)。然而,“野卡”可能通过岛的存在扩大局部的ECCD;可以发生各种理论预测扩大,并且在DIII-D中存在扩大的实验证据。宽于现在预期的ECCD在ITER中会使对齐更容易,但削弱了稳定,因此需要更多的RF功率。除了更新的ITER建模外,还制定了ITER相关的DIII-D ECCD Gyrotron启动镜控制系统硬件和实时等离子控制系统的进步[7],并有计划在DIII-D ITER演示放电中应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号