首页> 外文会议>Topical Conference on Radio Frequency Power in Plasmas >Ion and Electron Cyclotron Wall Conditioning in Stellarator and Tokamak Magnetic Field Configuration on WEGA
【24h】

Ion and Electron Cyclotron Wall Conditioning in Stellarator and Tokamak Magnetic Field Configuration on WEGA

机译:在Wega上的螺旋桨和Tokamak磁场配置中的离子和电子回旋壁调节

获取原文

摘要

Discharge wall conditioning is an effective tool to improve plasma performance in tokamaks and stellarators. RF Discharge Conditioning (RFDC) techniques are envisaged for use during operational campaigns on superconducting devices like the ITER tokamak and W7-X stellarator, as alternative to DC Glow.Discharge Conditioning which is inefficient in presence of magnetic fields. This contribution investigates RFDC in both the ion and electron cyclotron range of frequencies (ICRF and ECRF) on the WEGA device (Max-Planck-Institute for Plasma Physics, Greifswald, Germany) as preparation for W7-X operation. ECRF discharges produced by localised absorption of RF power at EC resonance layers suffer from poor radial discharge homogeneity in the tokamak vacuum magnetic field configuration, severely limiting the plasma wetted wall areas and consequently the conditioning efficiency. The non-localised production of ICRF discharges by collisional RF power absorption features much improved discharge homogeneity making Ion Cyclotron Wall Conditioning (ICWC) the favoured RFDC technique for superconducting tokamaks. RFDC with the stellarator vacuum magnetic field needs to aim at sufficient plasma densities at and outside the last closed flux surface (LCFS), maximising the convective plasma flux along the open field lines to the wall. Whereas for ICRF discharges this condition is easily fulfilled, on WEGA for He-ECRF discharges this could be achieved as well by off axis heating close to the LCFS. In stellarator magnetic field configuration it is found that He-ICWC for wall desaturation is at least one order of magnitude more efficient than He-ECWC. Novel ECWC methods are proposed that can decrease this efficiency gap with ICWC to a factor 2-3. The efficiency difference is less pronounced in case of H2-ICWC and ECWC for isotopic exchange.
机译:排出壁调理是提高在托卡马克和仿星等离子体性能的有效工具。 RF放电调节(RFDC)技术中操作的广告活动所设想的使用上超导像ITER托卡马克和W7-X仿星器装置,作为替代DC Glow.Discharge调理这是在磁场的存在下效率低下。这种贡献调查RFDC在两个WEGA设备(马普等离子物理研究所,格赖夫斯瓦尔德,德国)作为W7-X动作准备上频率(ICRF和ECRF)的离子和电子回旋范围。 ECRF放电通过在EC共振层的RF功率的局部吸收产生从真空托卡马克磁场配置差径向排出的均匀性受到影响,严重地限制了等离子体润湿壁区域并且因此调节效率。非本地化生产ICRF的排出通过碰撞RF功率吸收特征显着改善的放电均匀性使得离子回旋壁处理(ICWC)超导托卡马克偏爱的RFDC技术。 RFDC与仿星器真空磁场需要瞄准足够的等离子体密度在和上次关闭通量面(LCFS)外,沿着开放场线到壁最大化对流等离子体通量。而对于ICRF排放这种情况很容易满足,对WEGA因为他-ECRF排放这可以实现,以及由离轴加热贴近低碳燃料标准。在仿星磁场配置发现他-ICWC墙壁去饱和是数量级比他-ECWC更有效的中的至少一个数量级。提出了新ECWC的方法,可以减少与ICWC这种效率差距的因素2-3。效率差在H2-ICWC和ECWC的情况下用于同位素交换不太明显。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号