首页> 外文会议>International conference on nitride semiconductors >Strain-engineered novel III-N electronic devices with high quality dielectric/semiconductor interfaces
【24h】

Strain-engineered novel III-N electronic devices with high quality dielectric/semiconductor interfaces

机译:具有高质量电介质/半导体界面的应变工程的新型III-N电子器件

获取原文

摘要

Since the early demonstration of 2D-electron gas [M. A. Khan et al, Appl. Phys. Lett. 60, 3027 (1992)] and a heterojunction field effect transistor (HFET) [M. Asif Khan et al., Appl. Phys. Lett. 63, 1214 (1993)] in III-N materials, rapid progress has been made to improve the DC and RF performance of GaN-AlGaN based HFETs. Stable and impressive microwave powers as high as 4-8 W/mm have been reported for device operation frequencies from 10 to 35 GHz. The key reason for these high performance numbers is an extremely large sheet carrier densities ( > 1 x 10~(13) cm~(-2)) that can be induced at the interfaces in III-N hetereojunction [A. Bykhovsk et al., J. Appl. Phys. 74, 6734 (1993); M. Asif Khan et al., Appl. Phys. Lett. 75, 2806 (1999)]. These are instrumental in screening the channel dislocations thereby retAlNing large room temperature carrier mobilities ( > 1500 cm~2/Vs) and sheet resistance as low as 300 Ω/sq. These numbers and the high breakdown voltages of the large bandgap III-N material system thus enable rf-power approximately 5-10 times of that possible with GaAs and other competitor's technologies. We have recently introduced a unique pulsed atomic layer epitaxy approach to deposit AlN buffer layers and AlN/AlGaN superlattices [J. Zhang et al., Appl. Phys. Lett. 79, 925 (2001); J. P. Zhang et al., Appl. Phys. Lett. 80, 3542 (2002)] to manage strAlN and decrease the dislocation densities in high Al-content III-N layers. This has enabled us to significantly improve GaN/AlGaN hetereojunctions and the device isolation. The resulting low defect layers are not only key to improving the electronic but also deep ultraviolet light-emitting diode devices. For deep UV LED's they enabled us to obtAlN peak optical powers as high as 10 mW and 3 mW for wavelengths as short as 320 nm and 278 nm. Building on our past work [M. Asif Khan et al., Appl. Phys. Lett. 77, 1339 (2000); X. Hu et al., Appl. Phys. Lett. 79, 2832 (2001)] we have now deposited high quality SiO_2/Si_3N_4 films over AlGaN with low interface state densities. They have then been used to demonstrate III-N insulating gate transistors (MOSHFET (SiO_2) and MISHFET (Si_3N_4) with gate leakage currents 4-6 order less than those for conventional GaN-AlGaN HFETs. The introduction of the thin insulator layers (less then 100 A) under the gate increases the threshold voltage by 2-3 V. In addition, it reduces the peak transconductance g_m. However the unity cut-off frequency, the gain and the rf-powers remain unaffected as the g_m/C_(gs) (gate-source capacitance) ratio remains unchanged. In addition to managing the defects and gate leakage currents we have also employed InGaN channel double heterojunction structures (AlInGaN-InGaN-GaN) to confine the carriers thereby reducing the spillover into trappings states. These InGaN based MOS-DHFETs exhibited no current-collapse, extremely low gate leakage currents ( < 10~(-10) A/mm) and 10-26 GHz rf-powers in excess of 6 W/mm. We have also demonstrated the scalability and stable operation of our new and innovative InGaN based insulating gate heterojunction field effect transistor approach. In this paper we will review the III-N heterojunction field-effect transistors progress and pioneering innovations including the excellent work from several research groups around the world.
机译:自早期证明2D-Electron Gas [M. A. Khan等,Appl。物理。吧。 60,3027(1992)]和异质函数效应晶体管(HFET)[M. asif khan等人。,appl。物理。吧。 63,1214(1993)]在III-N材料中,已经进行了快速进展,提高了GaN-AlGaN基HFET的直流和RF性能。已经报告了高达4-8W / mm的稳定且令人印象深刻的微波功率,用于设备运行频率为10至35 GHz。这些高性能数的关键原因是极大的薄片载体密度(> 1×10〜(13)cm〜(-2)),可以在III-n Hetereojunction [A.的接口处Bykhovsk等。,J. Appl。物理。 74,6734(1993); M. Asif Khan等人。,Appl。物理。吧。 75,2806(1999)]。这些在筛选通道脱位方面是仪器,从而将大型室温载流(> 1500cm〜2 / Vs)和薄层电阻低至300Ω/ sq。这些数字和大带隙III-N材料系统的高击穿电压因此使RF功率能够与GaAs和其他竞争对手的技术相当5-10倍。我们最近推出了一种独特的脉冲原子层外延方法来沉积Aln缓冲层和Aln / AlGaN超级图案[J.张等人。,苹果。物理。吧。 79,925(2001); J.P.张等人。,Appl。物理。吧。 80,3542(2002)]以管理绞体并降低高Al含量III-N层中的位错密度。这使我们能够显着改善GaN / AlGaN Hetereojunction和设备隔离。由此产生的低缺陷层不仅是改善电子,而且是深紫外紫外发光二极管器件的关键。对于深紫色LED,它们使我们能够以高达10 MW的峰值光功率和3 MW的波长为320nm和278nm。建立我们过去的工作[M. asif khan等人。,appl。物理。吧。 77,1339(2000); X. Hu等,Appl。物理。吧。 79,2832(2001)]我们现在已经用低接口状态密度沉积了通过AlGaN的高质量SiO_2 / Si_3N_4薄膜。然后已被用于演示III-N绝缘栅极晶体管(MOSHFET(SIO_2)和MISHFET(SI_3N_4),栅极泄漏电流4-6订单低于传统GAN-AlGAN HFET的顺序。薄绝缘层的引入(较少然后在栅极下面的100a)通过2-3V增加阈值电压。此外,它会降低峰值跨导G_M。然而,Unity截止频率,增益和RF功率仍未受到G_M / C_( GS)(栅极 - 源电容)比保持不变。除了管理缺陷和栅极漏电流之外,我们还采用了IngaN通道双重异质结结构(Alingan-Ingan-GaN),将载体限制在载体中,从而将溢出物减少到刺绣状态。基于IngaN的MOS-DHFET表现出电流塌陷,极低的栅极泄漏电流(<10〜(-10)/ mm)和超过6W / mm的10-26 GHz RF功率。我们也证明了我们的新和Innova的可扩展性和稳定运行基于INGAN的绝缘栅异质结场效应晶体管方法。在本文中,我们将审查III-N个异性结现场效应晶体管进度和开创性创新,包括来自世界各地的几个研究群体的优秀工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号