首页> 外文会议>Symposium on analytical techniques for semiconductor materials and processes characterization >RECENT DEVELOPMENTS IN NUCLEAR METHODS IN SUPPORT OF SEMICONDUCTOR CHARACTERIZATION
【24h】

RECENT DEVELOPMENTS IN NUCLEAR METHODS IN SUPPORT OF SEMICONDUCTOR CHARACTERIZATION

机译:核方法支持半导体表征的最新发展

获取原文

摘要

The semiconductor industry heads towards shrinking device dimensions and new materials, there is a need for accurate and reliable physical characterization of very thin films. Most of the physical characterization of semiconductor devices are performed by Secondary Ion Mass Spectrometry (SIMS) and Rutherford Backscattering Spectrometry (RBS). The great sensitivity and the good reproducibility of SIMS and the quantitative compositional analysis of RBS are the strong characteristics in favor for this choice. Less well known are the applications of nuclear techniques for the analysis of ultra thin layers related to semiconductor materials. In this article, we will demonstrate by means of many examples and by selecting the appropriate nuclear techniques, these techniques lead to a better insight in material characterization In a first example we demonstrate the increased sensitivity by the study of the growth high-K materials based on ALCVD and MOCVD. In this example Rutherford Backscattering Spectrometry (RBS) and Nuclear Reaction Analysis (NRA) are used for the absolute quantification while High Resolution RBS (HRBS) and High Energy Elastic Recoil Analysis (H-ERD) are used for extreme depth resolutions down to 1nm. In a second example, we demonstrate the use of NRA in combination with Secondary Ion Mass Spectroscopy (SIMS). Combining the details of the SIMS profiles with the integral measurements of NRA provides then an excellent way to certify the SIMS profiles and to study effects such as self-sputtering during ion implantation, dose loss during annealing etc.. In a third example, the sub-nm depth resolution capabilities of HERD are demonstrated for the detection of Boron at the SiO_2/Si interface. Substantial differences with SIMS profiles in the near surface region could be demonstrated and provided insight in the fundamental mechanisms leading to the SIMS distortions. In a last example, the sub-nm depth resolution capabilities of Medium Energy Ion Scattering (MEIS) will be demonstrated in the characterization of the damage and annealing behavior of ultra shallow As implants in Si. An important issue in this area is the accurate determination of the near-Surface distribution of shallow implants and at interfaces. We conclude that for many problems in material characterization, a combined use of conventional techniques such as SIMS together with dedicated nuclear techniques provide good insight in the material behavior in shallow layers.
机译:半导体工业头朝向缩小装置尺寸和新材料,需要精确可靠地物理表征非常薄薄的薄膜。半导体器件的大多数物理表征由二次离子质谱(SIMS)和Rutherford反向散射光谱法(RB)进行。 SIMS的良好敏感性和良好的RBS的定量成分分析是对该选择的强大特性。较少人众所周知的是核技术在分析与半导体材料相关的超薄层的应用。在本文中,我们将通过许多示例和选择适当的核技术来证明,这些技术导致在第一个例子中的材料表征中的更好的洞察力,我们证明了基于生长的高K材料的研究增加了敏感性在Alcvd和Mocvd上。在该实施例中,Rutherford反向散射光谱法(RBS)和核反应分析(NRA)用于绝对定量,而高分辨率RBS(HRB)和高能弹性再压分析(H-ERD)用于极端深度分辨率下降至1nm。在第二个例子中,我们展示了NRA与二次离子质谱(SIMS)的使用。将SIMS配置文件的细节与NRA的整体测量相结合,提供了一种优异的方法来证明SIMS型材和在离子植入期间的自溅射,退火期间的剂量丢失等效果。在第三个例子中,子-nm深度分辨率的牛群的能力被证明在SIO_2 / SI接口处检测硼。可以证明与近近表面区域中的SIMS型材的显着差异,并提供了对导致SIMS扭曲的基本机制的洞察力。在最后的示例中,将在Si中的植入物中的血液损伤和退火行为的表征中说明中间能离子散射(MEIS)的子NM深度分辨率。该领域的一个重要问题是准确地确定浅植入物和界面的近表面分布。我们得出结论,对于材料表征中的许多问题,常规技术(如SIMS)的结合使用与专用核技术一起提供了良好的洞察浅层中的材料行为。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号