【24h】

Electron Correlation and Plutonium Phase Diagrams

机译:电子相关和钚相图

获取原文

摘要

Phase diagrams of plutonium metal are astonishingly complicated. The main feature is a sequence of crystallographically complex phases. Temperature, pressure and alloying shift the stability of these phases rapidly, so that pressure and alloy phase diagrams are also complicated. Another feature of the plutonium phase diagrams is the anomalously low melting point. How these two features, crystallographic complexity and low melting point, work to determine complicated phase diagrams is shown in Fig. 1. This figure, which is a composite of the relevant binary diagrams, shows that crystallographic complexity and low melting point are ,nearly exactly coincident. Such behavior is unique to the light actinides. It is natural to seek the source of this behavior in the collective properties of the 5f electrons, and in this paper we will trace some of the paths we are following in this search. Fig. 2 shows the linear thermal expansion of unalloyed Pu metal. As the temperature is raised, there is a progression of phases from low symmetry to high symmetry as the melting point is reached. The α- and β-phases are monoclinic, the γ-phase is orthorhombic, the δ-phase is FCC and the ε-phase is BCC. The δ'-phase is a transitional, tetragonal phase. A number of surprising features are apparent from this plot. First, the crystallographic complexity of the low temperature phases is unmatched by any other element: the α- and β-phases have 16 and 34 atoms per cell, respectively. This crystallographic complexity seems to be connected to the tendency of Pu to form intermetallic compounds with itself, the so-called "self-intermetallic" compounds (Lawson et al., 1996) or to another, probably equivalent, tendency toward structural complexity in narrow band materials (Soederlind et al., 1995, Soederlind, 1998, Hecker, 2000, and Baskes, 2000). Second, the FCC δ-phase has a surprising negative thermal expansion. Third, as noted, the melting point is surprisingly low, with a volume decrease at the melting point. This multiplicity of crystallographically stable phases leads to complex phase diagrams, some of which will be displayed in the next section, and a few features of interest will be pointed out. The following section will discuss some aspects of disorder (or short range order) that may be expected in Pu phases. After that, we will discuss the special case of vibrational disorder and present some measurements of the Debye-Waller factors of the various phases in unalloyed Pu. This leads to a discussion of the melting point of Pu, based on the Lindemann rule. Finally, there is a discussion of the thermodynamics of Pu, which leads us back to the topic of phase diagrams. At this point it is possible to make some contact with the topic of electron correlation.
机译:钚金属的相图是惊人的复杂性。主要特征是一系列晶形上复杂的阶段。温度,压力和合金化迅速移动这些相的稳定性,因此压力和合金相图也复杂。钚相图的另一个特征是异常低熔点。这两个特征如何,晶体复杂度和低熔点,用于确定复杂的相图的工作如图1所示。该图是相关二进制图的复合,表明结晶复杂性和低熔点几乎完全一致。这种行为对于轻型浮雕是独一无二的。在5F电子的集体属性中寻求这种行为的来源是自然的,在本文中,我们将追踪我们在此搜索中关注的一些路径。图。图2显示了未结合的PU金属的线性热膨胀。随着温度升高,随着熔点达到熔点,存在从低对称性的阶段的进展。 α-和β-相是单斜晶型,γ相是正晶的,δ相是FCC,ε-相是BCC。 δ'-相是过渡的四方相。从这个剧情中显而易见的一些令人惊讶的功能。首先,低温相的晶体复杂性由任何其他元素中的不匹配:α-和β-相分别具有16和34个原子。这种结晶复杂性似乎与PU的趋势与本身形成金属间化合物,所谓的“自我金属间”化合物(Lawson等,1996)或另一个,可能等同,对结构复杂性的趋势狭窄带材料(Soederlind等,1995,Soederlind,1998,Hecker,2000和Baskes,2000)。其次,FCCδ相具有令人惊讶的负热膨胀。第三,如上所述,熔点令人惊讶地低,熔点在熔点下降。这种多种晶形稳定的阶段导致复杂的相图,其中一些将在下一部分中显示,并且将指出一些感兴趣的特征。以下部分将讨论在PU阶段中可能预期的疾病(或短程顺序)的某些方面。之后,我们将讨论振动障碍的特殊情况,并在未合金化PU中展示各个阶段的Debye-Waller因子的一些测量。这导致了基于Lindemann规则的PU熔点的讨论。最后,讨论了PU的热力学,这使我们回到了相图的主题。此时,可以与电子相关话题进行一些接触。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号