首页> 外文会议>International conference on biotechnology in the pulp and paper industry >N-Hydroxy mediated laccase biocatalysis: Recent progress on its mechanism and future prospect of its application
【24h】

N-Hydroxy mediated laccase biocatalysis: Recent progress on its mechanism and future prospect of its application

机译:N-羟基介导的漆酶生物分析:最近其机制的进展和其应用的未来前景

获取原文

摘要

N-OH-containing compounds play important roles in many biological, pharmacological, and industrial processes. The traditional emphasis on the metal ion chelating property of the compounds has recently been shifted to the redox chemistry of the N-OH site, which is of great interest in developing mediated oxidoreductase-based biocatalyses, such as laccase-catalyzed delignification, decontamination, and organic synthesis. In an N-OH-mediated laccase biocatalysis system, N-OH is first oxidized into N-O ·by laccase. As shown by a comparative study of 33 N-OH-containing compounds and seven fungal laccases, the oxidation is controlled by the electron-transfer from N-OH to laccase whose rate depends on the redox potential difference between laccase and N-OH. Higher redox potential tends to reduce the oxidation rate of N-OH, similar to the cases of other laccase substrates such as phenols. The redox potential of N-OH is related to the frontier molecular orbital energy, which is proportional to electron-withdrawing ability of N-phenyl substituents. Using cyclic and differential pulse voltammetry, the N-O· decay can be quantitated. The stability of N-O· varies, depending on the heat of formation of the radical. Lower redox potential, better delocalization/resonance, or more extensive steric effect tend to make N-O· more stable. However, stabilization of N-O· mitigates against its oxidation of the target molecule of the biocatalysis. Balancing the reactivity and stability of N-O· is key to the catalytic efficiency. The prospect of N-OH mediated laccase biocatalysis is discussed in terms of applying quantum calculation, rational design, and methodology development.
机译:含N-OH的化合物在许多生物学,药理学和工业过程中起重要作用。最近将化合物的金属离子螯合性质的传统重点转移到N-OH位点的氧化还原化学,这对显影介导的氧化还原酶的生物涂膜具有很大的兴趣,例如漆酶催化的脱野,净化和净化有机合成。在N-OH介导的漆酶中,将N-OH首先通过漆酶氧化成N-O·。如含33个N-OH的化合物和7个真菌凝集酶的比较研究所示,通过从N-OH的电子转移来控制氧化,以曲线酶的速率,其速率取决于漆酶和N-OH之间的氧化还原电位差。较高的氧化还原电位倾向于降低N-OH的氧化速率,类似于其他漆酶如酚类的情况。 N-OH的氧化还原电位与前沿分子轨道能量有关,其与N-苯基取代基的吸电子能力成比例。使用循环和差分脉冲伏安法,可以定量N-O·腐烂。根据自由基的形成热,N-O·变化的稳定性。较低的氧化还原电位,更好的临近分配/共振,或更广泛的空间效果倾向于使N-O·更稳定。然而,N-O稳定·减轻其氧化生物催化的靶分子。平衡N-O的反应性和稳定性是催化效率的关键。在应用量子计算,合理设计和方法发育方面讨论了N-OH介导的漆酶生物催化的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号