首页> 外文会议>International Conference on Metal Cutting and High Speed Machining >REGENERATIVE STABILITY ANALYSIS OF HIGHLY INTERRUPTED MACHINING
【24h】

REGENERATIVE STABILITY ANALYSIS OF HIGHLY INTERRUPTED MACHINING

机译:高度中断加工的再生稳定性分析

获取原文

摘要

When a machine tool works on a surface that has already been machined (see Fig. 1), it is well known that, in many circumstances, the dynamic interaction of the tool with the wave left on the surface can cause the system to develop unstable vibrations. This type of self-excited tool oscillation is called regenerative chatter. Because chatter vibrations can cause poor surface finish on the workpiece and rapid tool wear, much work has been done on the modeling and analysis of the dynamics of regenerative chatter in machining; see, for example, the treatise of Tobias~1, the review article by Tlusty~2, or the more recent workshop proceedings edited by Moon~3. This work has produced a one degree-of-freedom lumped-parameter delay differential equation model, that Moon and Johnson~4 call the classical model for regenerative chatter, mx + c dx + kx = -K_tw(f + x(t) - x(t-tau)). (1) Here, for simplicity, we imagine a turning operation, so that the time delay tau is the reciprocal of the spindle speed OMEGA i.e. the time required for the workpiece to complete one revolution, f is the nominal feed rate, w is the axial depth of cut, and K_t is the relevant cutting coefficient (assumed constant). Analysis of this model (see, e.g., Tobias~1, Stepan~5) leads to the familiar depth of cut vs. spindle speed stability lobe picture of regenerative tool chatter (Fig. 2), where the chatter frequency is somewhat larger than the natural frequency of the most flexible mode of the machine-tool structural system. The analysis also supports the intuitive idea (see Tlusty~2) that the most stable cutting operation corresponds to the case when there is no change in the initial chip thickness. Thus, in the most stable situation, any surface waviness initially left by a perturbation in the motion of the tool is not amplified, because the tool returns to the same position after each revolution, i.e., x(t) = x(t-tau) This can be shown to occur when the spindle period is an integer multiple of the oscillation period of the tool.
机译:当机床厂一个已经被加工(见图1),这是众所周知的是,在许多情况下,在表面上,与留在表面上的波工具的动态交互可能会导致系统开发不稳定振动。这种类型的自激振荡工具被称为再生颤振。因为颤振可以在工件上并快速刀具磨损引起表面光洁度差,大量工作已经在建模和加工中再生颤振的动力学的分析完成的;见,例如,托比亚斯〜1,通过Tlusty〜2,或更近的车间程序审查文章月亮〜3编辑的论文。这项工作已经产生了一个程度的自由度集中参数延迟微分方程模型,即月球和约翰逊〜4呼叫为再生颤振,MX + C DX + KX = -K_tw经典模型(F + X(t) - X(t-tau蛋白))。 (1)在此,为了简单起见,我们设想一个转动操作,使时间延迟的tau是倒数主轴转速OMEGA即对于工件完整一转所需要的时间的,f是标称进给速度,w是切口的轴向深度,并且K_T是相关切削系数(假定为常数)。此模型(参见,例如,托拜厄斯〜1,斯泰潘〜5)通向切割与再生工具颤振的主轴转速稳定性叶图像(图2),所熟悉的深度的分析,其中所述颤振频率比稍大的机床结构系统的最灵活的模式的固有频率。该分析也支持直观的想法(见Tlusty〜2),最稳定的切割操作对应于以下情况时,有在初始芯片厚度没有变化。因此,在最稳定的情况下,任何表面波纹度最初通过在工具的运动的扰动左不被放大,因为该工具返回到同一位置每次旋转后,即,X(T)= X(t-tau蛋白)这可以示出当主轴周期是所述工具的振荡周期的整数倍产生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号