首页> 外文会议>International Conference on Metal Cutting and High Speed Machining >SHEAR LOCALISATION AND ITS CONSEQUENCE ON TOOL WEAR IN HIGH SPEED MACHINING
【24h】

SHEAR LOCALISATION AND ITS CONSEQUENCE ON TOOL WEAR IN HIGH SPEED MACHINING

机译:剪切本地化及其对高速加工工具磨损的结果

获取原文

摘要

(1) The flow stress decrease accompanying major microstructural softening events cause shear localisation in metal cutting. Dynamic recrystallisation and phase transformation are identified as major microstructural softening events occurring in the matrix that cause shear localisation. (2) A quantitative model to predict the onset of shear localised chip morphology is developed, which is rooted in Oxley's model for shear angle rotation to reach equilibrium shear angle. The occurrence of microstructural softening events before reaching the equilibrium shear angle is quantitatively analysed using the concept of critical strain for dynamic recrystallisation or phase transformation temperature. The model predictions on shear localised chip morphology due to dynamic recrystallisation are validated with the available flow stress data on 4340 steel. (3) The effect of lowering the phase transformation temperature in Fe-Ni-C model alloys by increasing the Ni content is shown to decrease the critical speed for the onset of shear localised chip morphology. This is consistent with the model predictions. (4) The consequence of shear localisation in the secondary shear zone is to cause chemical crater wear. The consequence of shear localisation in the primary shear zone is to cause chemical wear localised at the cutting edge of the tool. (5) By lubricating the tool-chip interface through glassy oxide inclusions engineered into the steel, the tribology of seizure can be prevented. By preventing the shear localisation in the secondary shear zone, it is shown that shear localisation in the primary shear zone can be suppressed. Thus, inclusion engineering offers a viable strategy to prevent chemical tool wear caused by shear localisation in the secondary and primary shear zones. This is the basis for the design and development of self-lubricating steel.
机译:(1)随着主要的微观结构软化事件的流量应力降低导致金属切割中的剪切定位。动态重结晶和相变被识别为在导致剪切定位的基质中发生的主要微观结构软化事件。 (2)进行预测剪切局部芯片形态的开始的定量模型,其植根于牛尔利模型,用于剪切角旋转以达到平衡剪切角。使用临界应变的概念来定量分析在达到平衡剪切角之前的微观结构软化事件的发生,用于动态重结晶或相变温度。由于4340钢上的可用流量应力数据验证了由于动态再结晶引起的剪切局部芯片形态的模型预测。 (3)通过增加Ni含量降低Fe-Ni-C型合金中相变温度的效果,降低了剪切局部芯片形态发作的临界速度。这与模型预测一致。 (4)二次剪切区剪切定位的结果是引起化学陨石坑磨损。初级剪切区中剪切定位的结果是使化学磨损在工具的切削刃处定位。 (5)通过将工具芯片界面润滑通过工程到钢的玻璃氧化物夹杂物,可以防止癫痫发作的摩擦学。通过防止二次剪切区中的剪切定位,示出可以抑制初级剪切区中的剪切定位。因此,包含工程提供了一种可行的策略,以防止由次级剪切区域剪切定位引起的化学工具磨损。这是自润滑钢的设计和开发的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号