首页> 外文会议>Symposium of the International Academy of Astronautics >FORECASTING SPACE DEBRIS DISTRIBUTIONS: A MEASURE THEORY APPROACH
【24h】

FORECASTING SPACE DEBRIS DISTRIBUTIONS: A MEASURE THEORY APPROACH

机译:预测空间碎片分布:测量理论方法

获取原文

摘要

The goal of this paper is to show how traditional covariance matrix propagation is not always fit for the purpose of forecasting either the distribution of space debris or (which turns out to be equivalent) the probability of finding a body drifting on a gravitational field with incomplete knowledge of its initial conditions. The main limitation of covariance matrix propagation comes from the fact that the debris density function is poorly described by the two first moments alone, even if the initial density function is spherical. Given enough time, the chaotic nature of the motion under gravity stretches and bends the initial debris distribution into distorted and growing shapes ( called by us "bananoids") that the two lowest moments can no longer model it. To illustrate this fact we analyze a very simple model composed of an almost massless body under the action of a central gravitational force to show that, even under such favorable conditions (no atmospheric effects, no non-gravitational forces, no random forces), covariance propagation fails miserably. To overcome the limitations of the traditional approach we turn to the differential equations of the motion and its topological and measure properties. The partial differential equation that describes the time history of the debris distribution is of the same mathematical nature of the Lagrangian or material derivative of the fluid mechanics. If we add random forces the motion becomes a diffusion process. Its distribution is thus governed by the well known Kolmogorov-Fokker-Planck partial differential equation. Covariance matrix propagation is indeed an approximate solution to the KFP equation. We propose that more elaborate approximations be used, either including higher moments or moving to a new set of base functions.
机译:本文的目标是显示如何将传统的协方差矩阵的传播并不总是适合预测任一空间碎片的分布的目的或(其结果是等效)发现漂流上的重力场具有不完整的本体的概率其初始条件的认识。协方差矩阵的传播的主要限制来自于碎片密度函数差仅由两个第一时刻所描述的,即使初始密度函数是球形的事实。如果有足够的时间,在重力作用下伸展运动的混乱本质和弯曲的初始碎片分布到扭曲的和不断增长的形状(美国“bananoids”之称),这两个最低的时刻,不能再建模。为了说明这一点,我们分析中心引力的作用下,几乎无质量体组成的非常简单的模型表明,即使在这种有利条件下(没有大气的影响,没有非引力,没有随机力),协方差传播悲惨地失败。为了克服我们转向运动和它的拓扑和度量属性的微分方程传统方法的局限性。描述碎屑分布的时间历史偏微分方程是的流体力学的拉格朗日或材料衍生物的相同的数学性质。如果再加上随机力量运动成为一个扩散过程。其分布因此通过公知的Kolmogorov-福克 - 普朗克偏微分方程支配。协方差矩阵传播是确实的近似解的方程KFP。我们建议,更精细的近似使用,无论是包括更高的时刻或者移动到一个新的组基本功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号