首页> 外文会议>International Symposium on Rarefied Gas Dynamics >Computations of rarefied hypersonic blunt body flow in binary inert gas mixtures using the generalized Boltzmann equation
【24h】

Computations of rarefied hypersonic blunt body flow in binary inert gas mixtures using the generalized Boltzmann equation

机译:使用广义Boltzmann方程,二元惰性气体混合物中稀土高超声钝体流动的计算

获取原文

摘要

The results of 2-D numerical simulations of hypersonic flow of a single diatomic gas, e.g., Nitrogen and a binary inert mixture of two gases (which are constituents of air namely N_2, O_2, Ar) past a 2-D blunt body in rotational non-equilibrium from low to high Knudsen Numbers are obtained using the Wang-Chang Uhlenbeck equation [1] or the Generalized Boltzmann Equation (GBE) [2]. The computational framework available for the classical Boltzmann equation for a monoatomic gas with translational degrees of freedom [3] is extended by including the rotational degrees of freedom in the GBE. The general computational methodology for the solution of the GBE for a diatomic gas is similar to that for the classical Boltzmann equation except that the evaluation of the collision integral becomes significantly more complex due to the quantization of rotational energy levels. There are two main difficulties encountered in computation of high Mach number flows of diatomic gases with rotational degrees of freedom using the GBE: (1) a large velocity domain is needed for accurate numerical description of molecular velocity distribution function resulting in enormous computational effort in calculation of the collision integral and (2) about 50 to 70 energy levels are needed for accurate representation of the rotational spectrum of the gas. These two problems result in very large CPU and memory requirements for shock wave computations at high Mach numbers (> 6). We employ a two level Rotational-Translational (RT) relaxation model to address this problem [4]; as a result the efficiency of calculations increases by several orders of magnitude. For numerical solution of GBE for an inert binary gas mixture, the GBE is formulated in the impulse space. The gas mixtures may consist of both monatomic and diatomic gases with arbitrary constituents, concentrations, and mass ratios. The method is exercised for various concentration ratios, mass ratios, and density ratios to evaluate its ability to simulate a wide range of binary gas mixtures of monoatomic and diatomic gases. In particular, the method is applied to simulate two of the three primary constituents of air (N_2, O_2, Ar) in a binary mixture at 1:1 density ratio and air concentration ratio with gases in translational and rotational non-equilibrium. The results of GBE are compared with DSMC calculations; a reasonably good agreement is obtained. The solutions presented in this paper can also serve as validation test cases for other methods as well as an important building block in developing complex 3D simulations for shock waves in a mixture of multiple gases.
机译:的单个双原子气体的超音速流的2-d的数值模拟的结果例如,氮和过去在旋转2-d钝体两种气体(这是空气成分即N_2,O_2中,Ar)的二元惰性混合物使用王昌乌伦贝克方程[1]或广义Boltzmann方程(GBE)[2]获得从低到高的克努森数非平衡。可用于古典波尔兹曼方程用于与平移自由度的单原子气体的计算框架[3]通过包括旋转自由度在GBE延长。用于GBE的一对双原子气体的溶液中的通用的计算方法是类似于用于除了经典波尔兹曼方程碰撞积分的评价变得更显著由于转动能级的量子化复合物。存在与使用GBE旋转自由度的双原子气体的流中的高马赫数计算遇到的两个主要困难:(1)需要一个大的速度域导致计算巨大的计算工作量分子速度分布函数的精确数值描述约50至70的能量水平向碰撞积分和(2)的所需的气体的旋转光谱的准确表示。这两个问题导致非常大的CPU和高马赫数(> 6)的冲击波计算的内存要求。我们采用了两级旋转 - 平移(RT)弛豫模型来解决这个问题[4];结果计算的效率提高了几个数量级的增加。用于惰性的两种混合气体GBE的数值解,所述GBE被配制在脉冲空间。气体混合物可以由具有任意成分,浓度和质量比的单原子和硅藻气体组成。该方法被行使关于各种浓度比,质量比,和密度比,以评估其对模拟各种单原子和双原子气体的二元气体混合物的能力。特别地,该方法应用于在1至模拟两个在二元混合物的空气的三种主要组分(N_2,O_2中,Ar):1点的密度比和空气浓度比在平移和旋转非平衡气体。 GBE的结果与DSMC计算比较;获得了相当不错的协议。在本文所提出的解决方案也可以作为验证测试​​用例的其它方法,以及开发用于冲击波复杂三维模拟在多种气体的混合物的重要构建块。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号