首页> 外文会议>International Congress on Photosynthesis >De novo proteins designed to study aromatic side-chain redox chemistry
【24h】

De novo proteins designed to study aromatic side-chain redox chemistry

机译:De Novo蛋白设计用于研究芳香侧链氧化还原化学

获取原文

摘要

Proteins play key roles in essentially all biological processes. The foundation for this remarkable functional diversity is provided by the structural and chemical properties of twenty different amino acids. In recent years, a specific feature of amino-acid functionality has moved into focus as four residues -- tyrosine, tryptophan, cysteine and glycine -- have been shown to form catalytically active, one-electron oxidized radicals (Stubbe and van der Donk, 1998). The family of proteins in which side-chain redox chemistry forms a principal mechanistic theme catalyzes a number of fundamental reactions in biology. The ribonucleotide reductase enzymes, for example, utilize three, if not all four, of the known redox-active side chains in the conversion of ribonucleotides to deoxyribonucleotides in all living organisms (Stubbe and van der Donk, 1998). The aromatic side-chain redox cofactors have been implicated in DNA repair (Aubert et al., 2000), lignin degradation (Whittaker et al.,1999), and they serve as redox mediators in several heme peroxidases (Stubbe and van der Donk, 1998, Ivancich et al., 1999). In addition, studies performed in the Babcock laboratory have shown that redox-active tyrosines are integral to the catalytic cycles of photosystem II (PSII) and cytochrome c oxidase (CcO), the two key enzymes involved in the major water to dioxygen and dioxygen to water redox cycle in Nature. Thus, in the end of the 80's Babcock, Barry, Debus and coworkers showed that a redox-active tyrosine links the photochemistry at the PSII reaction center with the water-splitting chemistry at the (Mn)_4 cluster (Babcock et al., 1989). In 1995, Babcock et al. proposed that this tyrosine operates as a H-atom transfer cofactor in the catalyticcycle of PSII. The H-atom abstraction model for PSII has been discussed and developed in a series of articles (see Tommos and Babcock, 2000, Hoganson and Babcock, 2000 and references therein). More recently, the MSU group showed that the histidine cross-linked tyrosine located at the active site of CcO is oxidized in one of the key intermediate state of the catalytic cycle. In their mechanistic model for dioxygen reduction in respiration, the cross-linked tyrosine serves as a H-atom donor during the oxygen-oxygen bond-breaking step (Proshlyakov et al., 2000).
机译:蛋白质在本质上所有的生物过程的关键角色。对于这一显着的功能多样性的基础是由二十种不同的氨基酸的结构和化学性质提供。近年来,氨基 - 酸官能的特定特征已经移动到焦点为四个残基 - 酪氨酸,色氨酸,半胱氨酸和甘氨酸 - 已被证明以形成催化活性的,单电子氧化自由基(Stubbe和van der栋克, 1998)。蛋白在其中侧链氧化还原化学形成主要机理主题家族催化数量在生物学的基本反应。核糖核苷酸还原酶,例如,使用三个,如果不是所有四个,在核糖核苷酸的转化的已知氧化还原活性侧链在所有活生物体的脱氧核糖核苷酸(Stubbe和van der反主动,1998)。芳族侧链的氧化还原辅因子已经在DNA修复牵连(Aubert的等人,2000),木质素降解(Whittaker的等人,1999),以及它们用作在几种血红素过氧化物酶的氧化还原介体(Stubbe和van der栋克, 1998年,Ivancich等人,1999)。此外,研究在巴布科克实验室进行显示,氧化还原活性的酪氨酸是不可或缺的光系统II(PSII)和细胞色素c氧化酶(CCO),参与的主要水分子氧和分子氧的两个关键酶的催化循环水在自然的氧化还原循环。因此,在80年代巴布科克,巴里,Debus和同事的结束表明,氧化还原活性酪氨酸在(Mn)的_4簇(Babcock等人,1989与水分解化学的PSII反应中心链接的光化学)。 1995年,巴布科克等。提出,这种酪氨酸作为PSII的catalyticcycle一个H-原子转移辅因子操作。对PSII的H-原子抽象模型已经讨论并在一系列的文章(请参阅Tommos和巴布科克,2000,Hoganson和巴布科克,2000年和其中的参考文献)开发。最近,MSU组表明,位于CCO的活性位点的组氨酸交联酪氨酸在催化循环中的关键中间状态中的一个被氧化。在它们在呼吸双氧还原机械模型,该交联酪氨酸用作时的氧 - 氧键裂化步骤的H原子给体(Proshlyakov等人,2000)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号