首页> 外文会议>International Rice Blast Conference >The role of carbohydrates in the pathogenicity of the rice blast fungus Magnaporthe grisea
【24h】

The role of carbohydrates in the pathogenicity of the rice blast fungus Magnaporthe grisea

机译:碳水化合物在稻瘟病真菌致病性致病性的作用

获取原文

摘要

To understand, and ultimately control, the ability of Magnaporthe grisea to infect rice it will be necessary to dissect the underlying genetic and biochemical adaptations associated. Using molecular genetic, cytological and biochemical approaches there has been significant progress in unravelling the basis of appressorium formation and function (Dean, 1997). In contrast relatively little is known of the characteristic biology associated with growth in planta. Such growth will depend on the ability of the fungus to assimilate photosynthetically derived sugars and to convert these into forms useful for its own nutrition, or for storage and subsequent mobilisation. Most plant sugars are unavailable to the fungus prior to penetration such that the forms of nutrient available will change qualitatively and quantitatively through the stages of pathogenic development. Different enzymes for carbohydrate storage and mobilisation might therefore be expected act at each stage and these enzymes, and the proteins which control their activity, may be required for successful plant colonisation. Identification of proteins involved in nutrition during pathogenesis will indicate which metabolic pathways are involved and may identify novel fungicide targets. The first clues as to what these factors might be involved have come with the recent identification, via insertional mutagenesis, of the PTHI and PTH9 genes (Sweigard et al., 1998). These have homology to GRR1, a yeast gene involved glucose regulation of transcription, (catabolite repression), and coupling the nutritional status of the cell to the progression of the cell cycle (Flick and Johnston, 1991; Li and Johnston, 1997), and NTHI, a neutral trehalase encoding gene (Kopp et al., 1993; Kopp et al., 1994) respectively. Mutant strains of M. grisea which carry an insertion within the respective homologues of these genes show reduced pathogenicity toward susceptible hosts suggesting that regulation of carbohydrate metabolism, possibly involving catabolite repression, and trehalose mobilisation both play a role in pathogenesis. As a first step toward understanding the carbohydrate fluxes which occur during pathogenesis we are characterising the PTH9 neutral trehalase encoding gene in greater detail. In this review we consider the storage carbohydrates present in fungi generally and reflect on WnlCn or mese may haw particular significance for pathogenesis of the rice blast fungus as well as the possible regulation of pathogenicity associated metabolic processes.
机译:要了解,最终控制,Magnaporthe Grisea感染米饭的能力将有必要将潜在的遗传和生物化学适应剖析。使用分子遗传学,细胞学和生化方法在解开孕产和功能的基础上存在显着进展(Dea​​n,1997)。相反,众所周知与Planta的生长相关的特征生物学。这种生长取决于真菌来吸化光合作衍生的糖的能力,并将这些转化为对其自身营养的形式,或用于储存和随后的动员。在渗透之前,大多数植物糖对于真菌不可用,因此通过致病发育的阶段,可用的营养素形式将变化和定量。因此,可以在每个阶段和这些酶的预期采取不同的碳水化合物储存和动员的酶,并且可能需要控制其活性的蛋白质来成功植物定植。在发病机制过程中涉及营养的蛋白质将表明涉及哪种代谢途径,可识别新的杀菌剂靶标。对于这些因素可能所涉及的第一个线索具有近期识别Pthi和Pth9基因的诱导(Sweigard等,1998)。这些对GRR1具有同源性,酵母基因涉及转录的葡萄糖调节,(分解代谢物抑制),并将细胞的营养状况偶联到细胞周期的进展(Flick和Johnston,1991; Li和Johnston,1997),以及Nthi,一种中性海藻化酶编码基因(Kopp等,1993; Kopp等,1994)。在这些基因的各种同源物内携带插入的突变体菌株显示出对易感宿主的降低的致病性,表明碳水化合物代谢的调节,可能涉及分解代谢物抑制,并且海藻糖动员在发病机制中发挥作用。作为理解在发病机制期间发生的碳水化合物助熔剂的第一步,我们将更详细地表征PTH9中性海藻酶编码基因。在这次审查中,我们认为目前在真菌储存的碳水化合物通常并反映WnlCn或梅塞可以山楂具有特殊意义的稻瘟病菌以及致病性相关的代谢过程的调控可能发病。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号