首页> 外文会议>Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems >Impact of Squeezing on the Microstructure of Thermal Interface Materials
【24h】

Impact of Squeezing on the Microstructure of Thermal Interface Materials

机译:挤压对热界面材料微观结构的影响

获取原文
获取外文期刊封面目录资料

摘要

Thermal interface materials (TIMs), consisting of high conductivity filler particles dispersed in a polymer matrix, are used in thermal management of electronics to bridge the gap between the heat generating components and the heat spreader or heat sink. Without TIMs, there is imperfect contact at the interface, resulting in detrimental chip performance and elevated temperatures that can ultimately lead to failure of the chip. In commercial applications, TIMs are dispensed on the chip, heat spreader, or the heat sink using a nozzle via an automated process. The TIM is then squeezed into a thin layer over the substrate by the alternate component (i.e., the device, heat spreader, or the heat sink), often followed by curing (e.g., at elevated temperature) to form a rigid bond. During squeezing, the particle-laden TIM generally exhibits non-Newtonian behavior and, after squeezing, the particle spatial distribution may be non-uniform. The flow behavior depends on dispense pattern (e.g., dots, lines, star patterns), parameters of the squeezing process (e.g., force and squeezing rate), and the TIM composition (e.g., particle shape, size distribution, volume fraction, and matrix composition). The velocity and applied pressure during squeezing significantly impacts the achievable bond line thickness (BLT) and the particle spatial distribution, which can cause the thermal performance of the TIM to deviate from the vendor-specified thermal characteristics. In practice, the maximum allowable squeeze pressure, which impacts the final BLT, is limited by potential mechanical failure of packaged electronics. There are open questions regarding the effect of squeezing on particle rearrangement and its effect on thermal conduction within the particle network. In this work, X-ray micro-computed tomography (XRCT) is used to measure the spatial distribution of particles in the TIM after (a) dispensing and (b) squeezing processes. A mock TIM with a target of 30 vol% copper microspheres (median diameter 114 μm) is created by handmixing the particles with a UV-curable epoxy. Microstructural features such as the average particle volume fraction, coordination number and radial distribution function (RDF) are computed to gain insights into the particle spatial arrangement in the TIM.
机译:由分散在聚合物基质中的高导电填充颗粒的热界面材料(TIM)用于电子设备的热管理,以弥合发热部件和散热器或散热器之间的间隙。没有时间,界面处存在不完美的接触,导致芯片性能有害性能和高温,最终可能导致芯片的故障。在商业应用中,通过自动化过程使用喷嘴在芯片,散热器或散热器上分配TIMS。然后通过替代组件(即,装置,散热器或散热器)在基板上被挤压到薄层上,通常是通过固化(例如,在升高的温度下)以形成刚性粘合剂。在挤压过程中,粒子载带蒂姆通常呈现非牛顿行为,并且在挤压之后,颗粒空间分布可能是不均匀的。流动行为取决于分配模式(例如,点,线,星形图案),挤压过程的参数(例如,力和挤压率),以及TIM成分(例如,颗粒形状,尺寸分布,体积分数和矩阵作品)。挤压过程中的速度和施加压力显着影响可实现的粘接线厚度(BLT)和颗粒空间分布,这可能导致摩擦的热性能偏离供应商指定的热特性。在实践中,影响最终BLT的最大允许挤压压力受到封装电子设备的潜在机械故障的限制。有关挤压粒子重排的效果的开放性问题及其对粒子网络中热传导的影响。在这项工作中,X射线微计算断层扫描(XRCT)用于测量(a)分配和(b)挤压过程之后的TIM中粒子的空间分布。具有30Vol%铜微球(中值114μm)的模拟摩擦是通过用UV可固化的环氧树脂混合的颗粒来产生的。计算诸如平均粒子体积分数,协调数量和径向分布函数(RDF)的微观结构特征,以在蒂姆中获得颗粒空间布置的洞察。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号