首页> 外文会议> >Comparison and Analysis of Different Removal Rate Models in Run-to-Run control of the Oxide CMP process
【24h】

Comparison and Analysis of Different Removal Rate Models in Run-to-Run control of the Oxide CMP process

机译:氧化物CMP工艺运行控制中不同去除率模型的比较和分析

获取原文
获取原文并翻译 | 示例

摘要

The CMP process has been widely applied in the semiconductor industry for both oxide dielectric and metal layerrnplanarization [2]. A typical process goal is to achieve "global" planarization by preferential removal of "high" materialrnon the wafer. The CMP p rocess is subject to different variations, usually caused by tool, product, and incomingrndisturbances [6]. In order to compensate for these disturbances, different run-to-run control methods have beenrninvestigated and reported [10, 5, 9, 1, 7]. In this work, we will focus on the control of the oxide CMP process.rnThe main objective of the CMP run-to-run controller is to reduce the lot-to-lot variation in the post-polish oxide filmrnthickness. Lot-to-lot variations can be caused by both tool-induced and product-induced disturbances. Since the CMPrnprocess includes mechanical abrasion of the surface, the primary tool-induced disturbance is the polish rate drift [4, 5].rnThis drift is a significant source of variation for the CMP process. The product -induced disturbance is due to differentrndevice pattern densities and different levels (e.g. ILD1 vs. ILD2). These differences are also a significant source ofrnvariation to CMP process, but the need to compensate for device pattern dependencies has not been addressed untilrnrecently [9, 3, 6, 7]. The main source of incoming disturbance is the pre-polish film thickness, which can berncompensated by feed forward control, I.e., feed the measured pre-polish film thickness to the controller to calculate thernpolish time. There are other sources of incoming variation, such as film density, but compared to the variation in pre-polishrnfilm thickness, they are relatively small [6]. Therefore, in this work, we only consider the pre-polish filmrnthickness variation for incoming disturbance.rnThe control of the CMP process is poor due to insufficient understanding of the process, degradation of the polishingrnpads, inconsistency of the slurry, variation in pad physical properties, and the lack of in-situ sensors [1]. Most CMPrnprocess control is based on the post-process measurement of film thickness. The state estimator is an important part ofrnthis run-to-run controller. Based on the measurements of pre- and post-polish film thickness, the state estimatorrnestimates the polish rate for the next run and sends it to the controller. The controller then calculates the polish time forrnthe next run, based on the estimated polish rate and the target film thickness. Consequently, the control performance isrndetermined by how well the state estimator can track the polish rate change. In addition to the different estimationrnmethods (e.g. EWMA, double-EWMA), the removal rate model also plays an essential role in the state estimation.
机译:CMP工艺已经在半导体工业中广泛应用于氧化物电介质和金属层的平面化[2]。典型的工艺目标是通过优先去除晶圆中的“高”材料来实现“整体”平坦化。 CMP过程受不同的变化的影响,通常是由工具,产品和传入的干扰引起的[6]。为了补偿这些干扰,已经研究并报道了不同的​​运行间控制方法[10、5、9、1、7]。在这项工作中,我们将重点放在控制氧化物CMP工艺上。CMP连续运行控制器的主要目标是减少抛光后氧化膜厚度的逐批变化。批次间的差异可能由工具引起的干扰和产品引起的干扰引起。由于CMPrn工艺包括表面的机械磨损,因此主要的工具引起的干扰是抛光速率漂移[4,5]。rn这种漂移是CMP工艺变化的重要来源。产品引起的干扰是由于不同的器件图案密度和不同的级别(例如ILD1与ILD2)引起的。这些差异也是造成CMP工艺变化的重要原因,但是直到最近[9、3、6、7]才解决了补偿设备模式依赖性的需求。进入干扰的主要来源是预抛光膜的厚度,可以通过前馈控制对其进行补偿,即,将测得的预抛光膜的厚度馈给控制器以计算出抛光时间。还有其他输入变化的来源,例如薄膜密度,但与抛光前薄膜厚度的变化相比,它们相对较小[6]。因此,在这项工作中,我们仅考虑预磨膜厚度对入射干扰的影响。由于对工艺的了解不足,抛光垫的退化,浆料的不一致性,抛光垫物理性能的变化,CMP工艺的控制效果很差。 ,并且缺少原位传感器[1]。大多数CMPrn过程控制都是基于膜厚的后处理测量。状态估计器是该运行控制器的重要组成部分。根据抛光前后膜厚的测量结果,状态估算器会估算下一次抛光的抛光速率,并将其发送给控制器。然后,控制器根据估算的抛光速率和目标薄膜厚度计算下一次抛光的抛光时间。因此,控制性能取决于状态估计器对抛光速率变化的跟踪程度。除了不同的估算方法(例如EWMA,double-EWMA)外,清除率模型在状态估算中也起着至关重要的作用。

著录项

  • 来源
    《》|2003年|1-2|共2页
  • 会议地点 Colorado Springs CO(US);Colorado Springs CO(US)
  • 作者单位

    Advanced Process Control, Advanced Micro Devices, Austin, TX 78741, USA;

    rnAdvanced Process Control, Advanced Micro Devices, Austin, TX 78741, USA;

    rnAdvanced Process Control, Advanced Micro Devices, Austin, TX 78741, USA;

    rnAdvanced Process Control, Advanced Micro Devices, Austin, TX 78741, USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号