首页> 外文会议>International Conference on Environmental Systems >Evaluation of Heat Transfer Strategies to Incorporate a Full Suit Flexible Radiator for Thermal Control in Space Suits
【24h】

Evaluation of Heat Transfer Strategies to Incorporate a Full Suit Flexible Radiator for Thermal Control in Space Suits

机译:热传递策略的评估在空间套装中加入全套柔性散热器

获取原文

摘要

Traditionally, thermoregulation of space walking astronauts has been achieved by the sublimation of water to the vacuum of space. Future missions call for the need to achieve robust closed-loop thermal control to reduce or eliminate extravehicular activity (EVA) burden on consumables. The current leading concept to achieve closed-loop thermal control is the Space Evaporator-Absorber-Radiator (SEAR). The SEAR is nearly capable of achieving the desired non-venting capability; however, carried water mass for evaporation will still be comparable to a sublimator-based system. Evolution from systems which leverage sublimation or evaporation of water as the primary heat rejection mechanism to a system which directly leverages the local radiation environment may provide another means of achieving robust closed-loop space suit thermal control at a reduced system mass. Previous EVA thermal control investigations that utilize radiation have generally limited radiator surface area to the available size of the portable life support system backpack: about 0.85 m2. The utilization of a full suit flexible radiator increases this area by a factor of ~4 for traditional gas pressure suits and ~2 for the advanced mechanical counter pressure suit concept. Radiator heat dissipation capacity is also dictated by radiator temperature, radiator surface properties (e.g. emissivity, absorptivity) and the local thermal environment. As such, suit radiator surface temperature should be maximized to the extent possible for the flexible radiator architecture to be feasible under most circumstances. Here we present radiator surface temperature guidelines for the full suit flexible radiator architecture in steady-state environments. Results identify favorable thermal environments in which a full suit flexible radiator can reject a nominal 300 W metabolic heat load produced within a space suit.
机译:传统上,通过对空间的真空升华来实现空间步行宇航员的温度调节。未来的任务要求需要实现强大的闭环热控制,以减少或消除耗材的素质活动(EVA)负担。目前实现闭环热控制的主要概念是空间蒸发器吸收器 - 散热器(SEAR)。该SEAR几乎能够实现所需的非通风能力;然而,蒸发的载水物质仍然与基于升华器的系统相当。利用升华或蒸发水作为主要辐射机构的系统的进化,直接利用局部辐射环境可以提供以减少的系统质量实现鲁棒闭环空间套管热控制的另一种方法。以前利用辐射的EVA热控制调查通常将散热器表面积大致有限,便携式寿命支持系统背包的可用尺寸:约0.85平方米。全套柔性散热器的利用将该面积增加了一个〜4的倍数,用于传统气体压力适用于先进的机械柜台压力套装概念。散热器散热容量也由散热器温度,散热器表面性质(例如发射率,吸收率)和局部热环境决定。因此,在大多数情况下,柔性散热器架构可行的可能性应该最大化适合散热器表面温度。在这里,我们在稳态环境中为全套柔性散热器架构提供散热器表面温度指南。结果确定有利的热环境,其中全套柔性散热器可以拒绝在空间套装内产生的标称300 W代谢热负荷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号